290 research outputs found

    Radio emission models of Colliding-Wind Binary Systems

    Full text link
    We present calculations of the spatial and spectral distribution of the radio emission from a wide WR+OB colliding-wind binary system based on high-resolution hydrodynamical simulations and solutions to the radiative transfer equation. We account for both thermal and synchrotron radio emission, free-free absorption in both the unshocked stellar wind envelopes and the shocked gas, synchrotron self-absorption, and the Razin effect. The applicability of these calculations to modelling radio images and spectra of colliding-wind systems is demonstrated with models of the radio emission from the wide WR+OB binary WR147. Its synchrotron spectrum follows a power-law between 5 and 15 GHz but turns down to below this at lower and higher frequencies. We find that while free-free opacity from the circum-binary stellar winds can potentially account for the low-frequency turnover, models that also include a combination of synchrotron self-absorption and Razin effect are favoured. We argue that the high-frequency turn down is a consequence of inverse-Compton cooling. We present our resulting spectra and intensity distributions, along with simulated MERLIN observations of these intensity distributions. From these we argue that the inclination of the WR147 system to the plane of the sky is low. We summarise by considering extensions of the current model that are important for models of the emission from closer colliding wind binaries, in particular the dramatically varying radio emission of WR140.Comment: 18 pages, 18 figures; Accepted by Astronomy and Astrophysics, July 8, 200

    X-ray emission from the double-binary OB-star system QZ Car (HD 93206)

    Full text link
    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The orbit of systems A (O9.7 I+b2 v, PA = 21 d) and B (O8 III+o9 v, PB = 6 d) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three temperature thermal plasma model, characterised by cool, moderate, and hot plasma components at kT ~ 0.2, 0.7, and 2 keV, respectively, and a circumstellar absorption of ~ 0.2 x 10^22 cm-2. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of ~ 7 x 10^-13 erg s-1 cm-2, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer the model and observations are in far better agreement, which lends support to the previous suggestion of mass-transfer in the O8 III + o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B.Comment: 11 pages, 7 figures. Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at leas

    XMM-Newton X-ray Observations of the Wolf-Rayet Binary System WR 147

    Full text link
    We present results of a 20 ksec X-ray observation of the Wolf-Rayet (WR) binary system WR 147 obtained with XMM-Newton. Previous studies have shown that this system consists of a nitrogen-type WN8 star plus an OB companion whose winds are interacting to produce a colliding wind shock. X-ray spectra from the pn and MOS detectors confirm the high extinction reported from IR studies and reveal hot plasma including the first detection of the Fe K-alpha line complex at 6.67 keV. Spectral fits with a constant-temperature plane-parallel shock model give a shock temperature kT(shock) = 2.7 keV [T(shock) ~ 31 MK], close to but slightly hotter than the maximum temperature predicted for a colliding wind shock. Optically thin plasma models suggest even higher temperatures, which are not yet ruled out. The X-ray spectra are harder than can be accounted for using 2D numerical colliding wind shock models based on nominal mass-loss parameters. Possible explanations include: (i) underestimates of the terminal wind speeds or wind abundances, (ii) overly simplistic colliding wind models, or (iii) the presence of other X-ray emission mechanisms besides colliding wind shocks. Further improvement of the numerical models to include potentially important physics such as non-equilibrium ionization will be needed to rigorously test the colliding wind interpretation.Comment: 8 pages, 7 figure

    Future sea level change from Antarctica's Lambert-Amery glacial system

    Get PDF
    Future global mean sea level (GMSL) change is dependent on the complex response of the Antarctic ice sheet to ongoing changes and feedbacks in the climate system. The Lambert-Amery glacial system has been observed to be stable over the recent period yet is potentially at risk of rapid grounding line retreat and ice discharge given that a significant volume of its ice is grounded below sea level, making its future contribution to GMSL uncertain. Using a regional ice sheet model of the Lambert-Amery system, we find that under a range of future warming and extreme scenarios, the simulated grounding line remains stable and does not trigger rapid mass loss from grounding line retreat. This allows for increased future accumulation to exceed the mass loss from ice dynamical changes. We suggest that the Lambert-Amery glacial system will remain stable or gain ice mass and mitigate a portion of potential future sea level rise over the next 500 years, with a range of +3.6 to −117.5 mm GMSL equivalent

    High-Resolution X-ray Imaging of the Colliding Wind Shock in WR147

    Get PDF
    We analyze new high-resolution Chandra X-ray images of the Wolf-Rayet binary system WR147. This system contains a WN8 star with an early-type companion located 0.6'' to its north, and is the only known early-type binary with a separation on the sky large enough for the wind-wind collision between the stars to currently be resolved at X-ray energies. The 5 ksec Chandra HRC-I image provides the first direct evidence for spatially extended X-ray emission in an early-type binary system. The X-ray emission peaks close to the position of the radio bow shock and north of the WN8 star. A deeper X-ray image is needed to accurately determine the degree of spatial extension, to exactly align the X-ray and optical/radio frames, and to determine whether part of the detected X-ray emission arises in the individual stellar winds. Simulated X-ray images of the wind-wind collision have a FWHM consistent with the data, and maximum likelihood fits suggest that a deeper observation may also constrain the inclination and wind momentum ratio of this system. However, as the WR wind dominates the colliding wind X-ray emission it appears unlikely that the mass-loss rate and the terminal velocity of the companion wind can be separately determined from X-ray observations. We also note an inconsistency between numerical and analytical estimates of the X-ray luminosity ratio of the stronger and weaker wind components, and conclude that the analytical results are in error.Comment: 13 pages, 6 figures, accepted by A&

    VLT/FLAMES-ARGUS observations of stellar wind--ISM cloud interactions in NGC 6357

    Full text link
    We present optical/near-IR IFU observations of a gas pillar in the Galactic HII region NGC 6357 containing the young open star cluster Pismis 24. These observations have allowed us to examined in detail the gas conditions of the strong wind-clump interactions taking place on its surface. We identify the presence of a narrow (~20 km/s) and broad (50-150 km/s) component to the H_alpha emission line, where the broadest broad component widths are found in a region that follows the shape of the eastern pillar edge. These connections have allowed us to firmly associate the broad component with emission from ionized gas within turbulent mixing layers on the pillar's surface set up by the shear flows of the O-star winds from the cluster. We discuss the implications of our findings in terms of the broad emission line component that is increasingly found in extragalactic starburst environments. Although the broad line widths found here are narrower, we conclude that the mechanisms producing both must be the same. The difference in line widths may result from the lower total mechanical wind energy produced by the O stars in Pismis 24 compared to that from a typical young massive star cluster found in a starburst galaxy. The pillar's edge is also clearly defined by dense (<5000 cm^-3), hot (>20000 K), and excited (via [NII]/H_a and [SII]/H_a ratios) gas conditions, implying the presence of a D-type ionization front propagating into the pillar surface. Although there must be both photoevaporation outflows produced by the ionization front, and mass-loss through mechanical ablation, we see no evidence for any significant bulk gas motions on or around the pillar. We postulate that the evaporated/ablated gas must be rapidly heated before being entrained.Comment: 9 pages, 5 figures (3 colour). Accepted for publication in MNRA

    Global X-ray properties of the O and B stars in Carina

    Get PDF
    The key empirical property of the X-ray emission from O stars is a strong correlation between the bolometric and X-ray luminosities. In the framework of the Chandra Carina Complex Project, 129 O and B stars have been detected as X-ray sources; 78 of those, all with spectral type earlier than B3, have enough counts for at least a rough X-ray spectral characterization. This leads to an estimate of the Lx/Lbol ratio for an exceptional number of 60 O stars belonging to the same region and triples the number of Carina massive stars studied spectroscopically in X-rays. The derived log(Lx/Lbol) is -7.26 for single objects, with a dispersion of only 0.21dex. Using the properties of hot massive stars listed in the literature, we compare the X-ray luminosities of different types of objects. In the case of O stars, the Lx/Lbol ratios are similar for bright and faint objects, as well as for stars of different luminosity classes or spectral types. Binaries appear only slightly harder and slightly more luminous in X-rays than single objects; the differences are not formally significant (at the 1% level), except for the Lx/Lbol ratio in the medium (1.0--2.5keV) energy band. Weak-wind objects have similar X-ray luminosities but they display slightly softer spectra compared to "normal" O stars with the same bolometric luminosity. Discarding three overluminous objects, we find a very shallow trend of harder emission in brighter objects. The properties of the few B stars bright enough to yield some spectral information appear to be different overall (constant X-ray luminosities, harder spectra), hinting that another mechanism for producing X-rays, besides wind shocks, might be at work. However, it must be stressed that the earliest and X-ray brightest amongst these few detected objects are similar to the latest O stars, suggesting a possibly smooth transition between the two processes.Comment: 30 pages, 9 figures. Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at leas

    Quasi-simultaneous XMM-Newton and VLA observation of the non-thermal radio emitter HD\168112 (O5.5III(f^+))

    Get PDF
    We report the results of a multiwavelength study of the non-thermal radio emitter HD168112 (O5.5III(f^+)). The detailed analysis of two quasi-simultaneous XMM-Newton and VLA observations reveals strong variability of this star both in the X-ray and radio ranges. The X-ray observations separated by five months reveal a decrease of the X-ray flux of ~30%. The radio emission on the other hand increases by a factor 5-7 between the two observations obtained roughly simultaneously with the XMM-Newton pointings. The X-ray data reveal a hard emission that is most likely produced by a thermal plasma at kT ~2-3 keV while the VLA data confirm the non-thermal status of this star in the radio waveband. Comparison with archive X-ray and radio data confirms the variability of this source in both wavelength ranges over a yet ill defined time scale. The properties of HD168112 in the X-ray and radio domain point towards a binary system with a significant eccentricity and an orbital period of a few years. However, our optical spectra reveal no significant changes of the star's radial velocity suggesting that if HD168112 is indeed a binary, it must be seen under a fairly low inclination.Comment: 17 pages, 11 figures (10 postscript + 1 gif

    V444 Cygni X-ray and polarimetric variability: radiative and coriolis forces shape the wind collision region

    Get PDF
    We present results from a study of the eclipsing, colliding-wind binary V444 Cyg that uses a combination of X-ray and optical spectropolarimetric methods to describe the 3D nature of the shock and wind structure within the system. We have created the most complete X-ray light curve of V444 Cyg to date using 40 ks of new data from Swift, and 200 ks of new and archived XMM-Newton observations. In addition, we have characterized the intrinsic, polarimetric phase-dependent behavior of the strongest optical emission lines using data obtained with the University of Wisconsin's Half-Wave Spectropolarimeter. We have detected evidence of the Coriolis distortion of the wind-wind collision in the X-ray regime, which manifests itself through asymmetric behavior around the eclipses in the system's X-ray light curves. The large opening angle of the X-ray emitting region, as well as its location (i.e. the WN wind does not collide with the O star, but rather its wind) are evidence of radiative braking/inhibition occurring within the system. Additionally, the polarimetric results show evidence of the cavity the wind-wind collision region carves out of the Wolf-Rayet star's wind
    corecore