48 research outputs found

    Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    Get PDF
    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 ±\pm 0.016 (stat) ±\pm 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GWth_{th} reactors. The results were obtained from a single 10 m3^3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 ±\pm 0.041 (stat) ±\pm 0.030 (syst), or, at 90% CL, 0.015 << \sang  <\ < 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments

    Development and evaluation of 10-inch Photo-Multiplier Tubes for the Double Chooz experiment

    Full text link
    The goal of Double Chooz experiment is a precise measurement of the last unknown mixing angle theta_13 using two identical detectors placed at far and near sites from Chooz reactor cores. The detector is optimized for reactor-neutrino detection using specially developed 10-inch PMTs. We developed two types of measurement systems and evaluated 400 PMTs before the installation. Those PMTs fulfill our requirements, and a half of those have been installed to the far detector in 2009. The character and performance data of the PMTs are stored in a database and will be referenced in analysis and MC simulation.Comment: Submitted to Nuclear Instruments and Methods

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    First measurement of θ<inf>13</inf> from delayed neutron capture on hydrogen in the Double Chooz experiment

    Get PDF
    The Double Chooz experiment has determined the value of the neutrino oscillation parameter θ13 from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds sin22θ13=0.097±0.034 (stat.)±0.034 (syst.), excluding the no-oscillation hypothesis at 2.0. This result is consistent with previous measurements of sin22θ13
    corecore