52 research outputs found
A genetic fingerprint of Amphipoda from Icelandic waters â the baseline for further biodiversity and biogeography studies
Source at https://doi.org/10.3897/zookeys.731.19931.Amphipods constitute an abundant part of Icelandic deep-sea zoobenthos yet knowledge of the diversity of this fauna, particularly at the molecular level, is scarce. The present work aims to use molecular methods to investigate genetic variation of the Amphipoda sampled during two IceAGE collecting expeditions. The mitochondrial cytochrome oxidase subunit 1 (COI) of 167 individuals originally assigned to 75 morphospecies was analysed. These targeted morhospecies were readily identifiable by experts using light microscopy and representative of families where there is current ongoing taxonomic research. The study resulted in 81 Barcode Identity Numbers (BINs) (of which >90% were published for the first time), while Automatic Barcode Gap Discovery revealed the existence of 78 to 83 Molecular Operational Taxonomic Units (MOTUs). Six nominal species (Rhachotropis helleri, Arrhis phyllonyx, Deflexilodes tenuirostratus, Paroediceros propinquus, Metopa boeckii, Astyra abyssi) appeared to have a molecular variation higher than the 0.03 threshold of both p-distance and K2P usually used for amphipod species delineation. Conversely, two Oedicerotidae regarded as separate morphospecies clustered together with divergences in the order of intraspecific variation. The incongruence between the BINs associated with presently identified species and the publicly available data of the same taxa was observed in case of Paramphithoe hystrix and Amphilochus manudens. The findings from this research project highlight the necessity of supporting molecular studies with thorough morphology species analyses
Pandoraâs box in the deep sea âintraspecific diversity patterns and distribution of two congeneric scavenging amphipods
Paralicella tenuipes Chevreux, 1908 and Paralicella
Shulenberger and Barnard, 1976 are known as widely distributed deep-sea scavenging amphipods. Some recent studies based on genetic data indicated the presence of high intraspecificvariationofP.caperescasuggestingitisaspeciescomplex.Basedon published molecular data from the Pacific and Indian oceans and new material obtained from the North and South Atlantic, we integrated the knowledge on the intraspecific variation and species distribution of the two nominal taxa. The study included analysis of three genes (COI, 16S rRNA, 28S rRNA) and revealed the existence of a single Molecular Operational Taxonomic Unit (MOTU) within P. tenuipes and six different MOTUs forming P. caperesca. The distribution pattern of the recognized lineages varied with three (P. tenuipes, MOTU 1 and MOTU 5 of P. caperesca) being widely distributed. There was evidence of contemporary population connectivity expressed by the share of the same COI haplotypes by individuals from very distant localities. At the same time no signal of recent demographic changes was observed within the studied taxa. The time-calibrated phylogeny suggested the emergence of species to be at the time of Mesozoic/Cenozoic transition that may be associated with global changes of the ocean circulation and deep sea water cooling
Boron and Gadolinium Loaded fe3o4 Nanocarriers for Potential Application in Neutron Cancer Therapy
In this article, a novel method of simultaneous carborane-and gadolinium-containing compounds as efficient agents for neutron capture therapy (NCT) delivery via magnetic nanocarriers is presented. The presence of both Gd and B increases the efficiency of NCT and using nanocarriers enhances selectivity. These factors make NCT not only efficient, but also safe. Superparamagnetic Fe3O4 nanoparticles were treated with silane and then the polyelectrolytic layer was formed for fur-ther immobilization of NCT agents. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), ultravioletâvisible (UV-Vis) and Mössbauer spectroscopies, dynamic light scattering (DLS), scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM) were applied for the characterization of the chemical and element composition, structure, mor-phology and magnetic properties of nanocarriers. The cytotoxicity effect was evaluated on different cell lines: BxPC-3, PC-3 MCF-7, HepG2 and L929, human skin fibroblasts as normal cells. average size of nanoparticles is 110 nm; magnetization at 1T and coercivity is 43.1 emu/g and 8.1, respectively; the amount of B is 0.077 mg/g and the amount of Gd is 0.632 mg/g. Successful immobilization of NCT agents, their low cytotoxicity against normal cells and selective cytotoxicity against cancer cells as well as the superparamagnetic properties of nanocarriers were confirmed by analyses above. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.This study was funded by the Ministry of Education and Science of the Republic of Kazakhstan (grant No. AP08051954 "Synthesis and modification of magnetic nanoparticles for targeted delivery of drugs"), Joint Institute for Nuclear Research-Republic of Kazakhstan cooperation program (Order No. 391, 20 July 2020) and grant âM20MC-024 of The Belarusian Republican Foundation for Fundamental Research
Phytosulfokine stimulates cell divisions in sugar beet (Beta vulgaris L.) mesophyll protoplast cultures
The aim of this work was to improve plating efficiency of sugar beet mesophyll protoplast cultures. Preliminary experiments showed that cultures of good quality, viable protoplasts were obtained in rich media based on the Kao and Michayluk formulation and with the calcium alginate as an embedding matrix. Nevertheless, in these cultures cell divisions were either not observed or very seldom confirming earlier reported recalcitrance of sugar beet protoplasts. The recalcitrant status of these cultures was reversed upon application of exogenous phytosulfokine (PSK)âa peptidyl plant growth factor. The highest effectiveness of PSK was observed at 100 nM concentration. Plating efficiencies obtained in the presence of PSK reached approximately 20% of the total cultured cells. The stimulatory effect of phytosulfokine was observed for all tested breeding stocks of sugar beet. Our data indicate that PSK is a powerful agent able to overcome recalcitrance of plant protoplast cultures
Development of the operational model and methodology of collecting data, updating, and sharing methodologies to specific groups of stakeholders
ABSTRACT: The overall objective of the FRONTSH1P project is to ensure the green and just transition of the Polish Lodzkie Region towards decarbonization and territorial regeneration through demonstration at TRL7 of four Circular Systemic Solutions (CSS), interconnected one each other and facing the identified regional challenges/opportunities. FRONTSH1P systemic approach will be enabled by a circular governance model that connects environmental policies with social justice through just transition ensuring environmental sustainability, jobs and social inclusion. The flexibility and modularity of the four CSSs guarantee a high replicability and scalability to other territories across Europe and beyond and this will be demonstrated with the involvement of four additional Regions across EU. This report â Deliverable 2.2 (D2.2) is the result of the work carried out under the Work Package 2 - Regional Systemic Circular Economic Approach, Task 2.2. - Regional Circularity Booster Toolkit. D2.2 meets the FRONTSH1P key enabler and requirement, presents the initial approach of the digital platform creation and methodology for data collection and sharing scheme elaboration. The EU General Data Protection Regulation and open data compliant frameworks have been addressed in D2.2 too.N/
Polymorphisms within autophagy-related genes as susceptibility biomarkers for multiple myeloma: a meta-analysis of three large cohorts and functional characterization
Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12 February 2020) using the MOLGENIS open-source platform for scientific data.Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the
bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains,
resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a
dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development,
but also ensuring MM cell survival and promoting resistance to treatments. To date no studies
have determined the impact of genetic variation in autophagy-related genes on MM risk. We
performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and
6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms
(SNPs; p < 1 Ă 10â9) with immune responses in whole blood, peripheral blood mononuclear
cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy
donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46,
IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 Ă 10â4â5.79 Ă 10â14).
Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations
of vitamin D3 (p = 4.0 Ă 10â4), whereas the IKBKErs17433804 SNP correlated with the number of
transitional CD24+CD38+ B cells (p = 4.8 Ă 10â4) and circulating serum concentrations of Monocyte
hemoattractant Protein (MCP)-2 (p = 3.6 Ă 10â4). We also found that the CD46rs1142469 SNP corre lated with numbers of CD19+ B cells, CD19+CD3â B cells, CD5+ IgDâ cells, IgMâ cells, IgDâIgMâ
cells, and CD4âCD8â PBMCs (p = 4.9 Ă 10â4â8.6 Ă 10â4
) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels
of CD4+EMCD45RO+CD27â cells (p = 9.3 Ă 10â4
). These results suggest that genetic variants within
these six loci influence MM risk through the modulation of specific subsets of immune cells, as well
as vitamin D3â, MCP-2â, and IL20-dependent pathways.This work was supported by the European Unionâs Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), ConsejerĂa de TransformaciĂłn EconĂłmica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de CĂĄncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB).This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)âproject UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF)
Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p \u3c 1 Ă 10â9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 Ă 10â4â5.79 Ă 10â14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 Ă 10â4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 Ă 10â4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 Ă 10â4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3â B cells, CD5+IgDâ cells, IgMâ cells, IgDâIgMâ cells, and CD4âCD8â PBMCs (p = 4.9 Ă 10â4â8.6 Ă 10â4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27â cells (p = 9.3 Ă 10â4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3â, MCP-2â, and IL20-dependent pathways
Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma
[Excerpt] Multiple myeloma (MM) is the third most common hematological malignancy, after Non-Hodgkin Lymphoma and Leukemia. MM is generally preceded by Monoclonal Gammopathy of Undetermined Significance (MGUS) [1], and epidemiological studies have identified older age, male gender, family history, and MGUS as risk factors for developing MM [2].
The somatic mutational landscape of sporadic MM has been increasingly investigated, aiming to identify recurrent genetic events involved in myelomagenesis. Whole exome and whole genome sequencing studies have shown that MM is a genetically heterogeneous disease that evolves through accumulation of both clonal and subclonal driver mutations [3] and identified recurrently somatically mutated genes, including KRAS, NRAS, FAM46C, TP53, DIS3, BRAF, TRAF3, CYLD, RB1 and PRDM1 [3,4,5].
Despite the fact that family-based studies have provided data consistent with an inherited genetic susceptibility to MM compatible with Mendelian transmission [6], the molecular basis of inherited MM predisposition is only partly understood. Genome-Wide Association (GWAS) studies have identified and validated 23 loci significantly associated with an increased risk of developing MM that explain ~16% of heritability [7] and only a subset of familial cases are thought to have a polygenic background [8]. Recent studies have identified rare germline variants predisposing to MM in KDM1A [9], ARID1A and USP45 [10], and the implementation of next-generation sequencing technology will allow the characterization of more such rare variants. [...]French National Cancer Institute (INCA) and the Fondation Française pour la Recherche contre le Myélome et les Gammapathies (FFMRG), the Intergroupe Francophone du Myélome (IFM), NCI R01 NCI CA167824 and a generous donation from Matthew Bell. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank the Association des Malades du Myélome Multiple (AF3M) for their continued support and participation. Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organizatio
Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 Ă 10â9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 Ă 10â4â5.79 Ă 10â14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 Ă 10â4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 Ă 10â4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 Ă 10â4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3â B cells, CD5+IgDâ cells, IgMâ cells, IgDâIgMâ cells, and CD4âCD8â PBMCs (p = 4.9 Ă 10â4â8.6 Ă 10â4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27â cells (p = 9.3 Ă 10â4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3â, MCP-2â, and IL20-dependent pathways.This work was supported by the European Unionâs Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), ConsejerĂa de TransformaciĂłn EconĂłmica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de CĂĄncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB). This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)âproject UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).Peer reviewe
- âŠ