131 research outputs found

    GlyGly-CTERM and Rhombosortase: A C-Terminal Protein Processing Signal in a Many-to-One Pairing with a Rhomboid Family Intramembrane Serine Protease

    Get PDF
    The rhomboid family of serine proteases occurs in all domains of life. Its members contain at least six hydrophobic membrane-spanning helices, with an active site serine located deep within the hydrophobic interior of the plasma membrane. The model member GlpG from Escherichia coli is heavily studied through engineered mutant forms, varied model substrates, and multiple X-ray crystal studies, yet its relationship to endogenous substrates is not well understood. Here we describe an apparent membrane anchoring C-terminal homology domain that appears in numerous genera including Shewanella, Vibrio, Acinetobacter, and Ralstonia, but excluding Escherichia and Haemophilus. Individual genomes encode up to thirteen members, usually homologous to each other only in this C-terminal region. The domain's tripartite architecture consists of motif, transmembrane helix, and cluster of basic residues at the protein C-terminus, as also seen with the LPXTG recognition sequence for sortase A and the PEP-CTERM recognition sequence for exosortase. Partial Phylogenetic Profiling identifies a distinctive rhomboid-like protease subfamily almost perfectly co-distributed with this recognition sequence. This protease subfamily and its putative target domain are hereby renamed rhombosortase and GlyGly-CTERM, respectively. The protease and target are encoded by consecutive genes in most genomes with just a single target, but far apart otherwise. The signature motif of the Rhombo-CTERM domain, often SGGS, only partially resembles known cleavage sites of rhomboid protease family model substrates. Some protein families that have several members with C-terminal GlyGly-CTERM domains also have additional members with LPXTG or PEP-CTERM domains instead, suggesting there may be common themes to the post-translational processing of these proteins by three different membrane protein superfamilies

    NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis

    Get PDF
    The transcription regulator, tvMyb1, is the first Myb family protein identified in Trichomonas vaginalis. Using an electrophoretic mobility shift assay, we defined the amino-acid sequence from Lys35 to Ser141 (tvMyb135–141) as the minimal DNA-binding domain, encompassing two Myb-like DNA-binding motifs (designated as R2 and R3 motifs) and an extension of 10 residues at the C-terminus. NMR solution structures of tvMyb135–141 show that both the R2 and R3 motifs adopt helix-turn-helix conformations while helix 6 in the R3 motif is longer than its counterpart in vertebrate Myb proteins. The extension of helix 6 was then shown to play an important role in protein stability as well as in DNA-binding activity. The structural basis for the tvMyb135–141/DNA interaction was investigated using chemical shift perturbations, residual dipolar couplings, DNA specificity data and data-driven macromolecular docking by HADDOCK. Our data indicate that the orientation between R2 and R3 motifs dramatically changes upon binding to DNA so as to recognize the DNA major groove through a number of key contacts involving residues in helices 3 and 6. The tvMyb135–141/DNA complex model furthers our understanding of DNA recognition by Myb proteins and this approach could be applied in determining the complex structures involving proteins with multiple domains

    The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist

    Get PDF
    Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation

    Decrypting magnetic fabrics (AMS, AARM, AIRM) through the analysis of mineral shape fabrics and distribution anisotropy

    Get PDF
    The fieldwork was supported by the DIPS project (grant no. 240467) and the MIMES project (grant no. 244155) funded by the Norwegian Research Council awarded to O.G. O.P.'s position was funded from Y-TEC.Anisotropy of magnetic susceptibility (AMS) and anisotropy of magnetic remanence (AARM and AIRM) are efficient and versatile techniques to indirectly determine rock fabrics. Yet, deciphering the source of a magnetic fabric remains a crucial and challenging step, notably in the presence of ferrimagnetic phases. Here we use X-ray micro-computed tomography to directly compare mineral shape-preferred orientation and spatial distribution fabrics to AMS, AARM and AIRM fabrics from five hypabyssal trachyandesite samples. Magnetite grains in the trachyandesite are euhedral with a mean aspect ratio of 1.44 (0.24 s.d., long/short axis), and > 50% of the magnetite grains occur in clusters, and they are therefore prone to interact magnetically. Amphibole grains are prolate with magnetite in breakdown rims. We identified three components of the petrofabric that influence the AMS of the analyzed samples: the magnetite and the amphibole shape fabrics and the magnetite spatial distribution. Depending on their relative strength, orientation and shape, these three components interfere either constructively or destructively to produce the AMS fabric. If the three components are coaxial, the result is a relatively strongly anisotropic AMS fabric (P’ = 1.079). If shape fabrics and/or magnetite distribution are non-coaxial, the resulting AMS is weakly anisotropic (P’ = 1.012). This study thus reports quantitative petrofabric data that show the effect of magnetite distribution anisotropy on magnetic fabrics in igneous rocks, which has so far only been predicted by experimental and theoretical models. Our results have first-order implications for the interpretation of petrofabrics using magnetic methods.Publisher PDFPeer reviewe

    In Vitro Identification of Novel Plasminogen-Binding Receptors of the Pathogen Leptospira interrogans

    Get PDF
    Background: Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin. Methodology/Principal Findings: We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin. Conclusions/Significance: PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)Fundacao Butantan, BrazilFAPESP (Brazil

    Relationship between the Clinical Frailty Scale and short-term mortality in patients ≥ 80 years old acutely admitted to the ICU: a prospective cohort study.

    Get PDF
    BACKGROUND: The Clinical Frailty Scale (CFS) is frequently used to measure frailty in critically ill adults. There is wide variation in the approach to analysing the relationship between the CFS score and mortality after admission to the ICU. This study aimed to evaluate the influence of modelling approach on the association between the CFS score and short-term mortality and quantify the prognostic value of frailty in this context. METHODS: We analysed data from two multicentre prospective cohort studies which enrolled intensive care unit patients ≥ 80 years old in 26 countries. The primary outcome was mortality within 30-days from admission to the ICU. Logistic regression models for both ICU and 30-day mortality included the CFS score as either a categorical, continuous or dichotomous variable and were adjusted for patient's age, sex, reason for admission to the ICU, and admission Sequential Organ Failure Assessment score. RESULTS: The median age in the sample of 7487 consecutive patients was 84 years (IQR 81-87). The highest fraction of new prognostic information from frailty in the context of 30-day mortality was observed when the CFS score was treated as either a categorical variable using all original levels of frailty or a nonlinear continuous variable and was equal to 9% using these modelling approaches (p < 0.001). The relationship between the CFS score and mortality was nonlinear (p < 0.01). CONCLUSION: Knowledge about a patient's frailty status adds a substantial amount of new prognostic information at the moment of admission to the ICU. Arbitrary simplification of the CFS score into fewer groups than originally intended leads to a loss of information and should be avoided. Trial registration NCT03134807 (VIP1), NCT03370692 (VIP2)
    corecore