
1. Introduction
The analysis of magnetic fabrics by means of anisotropy of magnetic susceptibility (AMS) and anisotropy 
of anhysteretic and isothermal remanence magnetization (AARM and AIRM) are routinely employed for 
rock fabric (or petrofabric) determination. Their use is highly versatile, from the analysis of igneous flow 
fabrics in intrusive and extrusive environments (Cañón-Tapia & Castro, 2004; Chadima et al., 2009; Eriks-
son et al., 2011; Geoffroy et al., 2002; Khan, 1962; Knight & Walker, 1988; Martin et al., 2019; Mattsson 
et al., 2018; McCarthy et al., 2015a; Stevenson et al., 2007; Tauxe et al., 1998) and magmatic to sub-magmatic 
state tectonic overprinting (Di Chiara et al., 2020; McCarthy et al., 2015b; Petronis et al., 2012), to solid-state 
deformation fabrics across low-grade (Cifelli et al., 2009; García-Lasanta et al., 2013), to high-grade met-
amorphic conditions (Borradaile & Lagroix, 2001; Merz et al., 2019). To reliably interpret magma flow or 
rock deformation from AMS data require knowing a crucial intermediate step: The relationship between 
the magnetic signal and the petrofabric. However, constraining which minerals give rise to the magnetic 
fabric, and how the shape and spatial arrangement of these minerals impact magnetic anisotropy, remains 
challenging (Biedermann, 2020a; Borradaile & Jackson, 2010).

The source of the AMS of a rock is principally the shape and the crystallographic preferred orientations of 
mineral grains (SPO and CPO, respectively), and the magnetic interaction between ferro- and ferrimagnetic 
particles (Biedermann, 2018; Borradaile & Jackson, 2010; Bouchez, 2000; Butler & Banerjee, 1975; Frandsen 
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et al., 2004; Schöpa et al., 2015). For paramagnetic minerals such as pyroxene, amphibole, and biotite, the 
AMS principal axes usually correlates to crystallographic axes and are produced by the Fe spatial ordering 
in the crystal lattice (Biedermann, 2018; Biedermann et al., 2015; Borradaile & Jackson, 2010). However, 
this relation does not hold for ferrimagnetic minerals (in particular magnetite) because the (low-field) AMS 
may have several sources, in this case domain state and distribution anisotropy (DA) are two key factors 
(Ferré, 2002; Hrouda, 1982; Potter & Stephenson, 1988; Stephenson et al., 1986).

The grain-scale AMS of ferrimagnetic minerals is known to be dependent on domain state: In multi-do-
main (MD) magnetite, the axes of the AMS ellipsoid (k1, k2, k3) correlate with the long (v1), intermediate 
(v2) and short (v3) axes of the magnetite crystal (Borradaile & Jackson, 2010; Dunlop, 1981; Ferré, 2002; 
Hrouda, 1982); while for single-domain (SD) magnetite grains, the AMS axes inversely correlate with the 
grain shape (k1 coaxial to v3 and k3 coaxial to v1), leading to so-called inverse magnetic fabrics (Almqvist 
et al., 2012; Ferré, 2002; Potter & Stephenson, 1988; Rochette et al., 1992, 1999; Stephenson et al., 1986).

DA is caused by the magnetic interaction of closely spaced ferri and ferromagnetic grains (e.g., magnet-
ite, pyrrhotite), this phenomenon may also be reflected in the AMS fabric (Cañón-Tapia,  1996; Gaillot 
et al., 2006; Grégoire et al., 1995, 1998; Hargraves et al., 1991; Stephenson, 1994). For example, a planar 
AMS fabric may be observed when magnetite grains are distributed in planes such as in magmatic cumulate 
layers (Hargraves et al., 1991; Selkin et al., 2014), even if individual magnetite grains are aligned along a sin-
gle axis that defines a linear SPO. However, for DA to become significant, ferrimagnetic minerals need to be 
closely clustered since their interaction weakens exponentially with the distance between crystals (Stephen-
son, 1994). Gaillot et al. (2006) defined a ratio between mean crystal grain size (d) and distance between 
crystal centers (r) that predicts that weak ferrimagnetic grain–grain interaction occurs when (d/r) > 0.5 
and strong grain–grain interaction will occur when (d/r) > 0.8. They further proposed that DA is not a 
significant contributor to AMS unless the magnetic mineralogy of a sample is dominated by ferrimagnetic 
minerals with very low shape anisotropy (Gaillot et al., 2006).

One way to investigate the source of the AMS fabric is by cross referencing data arising from multiple mag-
netic anisotropy methods and petrofabric analysis. AARM is controlled by magnetic remanence and is used to 
measure the fabric of ferrimagnetic minerals in isolation from other rock forming minerals that may bias the 
AMS of a sample (Bilardello & Jackson, 2014; Borradaile & Jackson, 2010; Jackson, 1991; McCabe et al., 1985). 
Low-field AIRM can further be applied to identify the contribution of low-coercivity grains, such as MD ti-
tanomagnetite and MD magnetite, to the AMS fabric (Bogue et al., 1995; Stephenson et al., 1986; Tarling & 
Hrouda, 1993). Mineral SPO studies on ferrimagnetic and silicate minerals using image analysis have com-
monly been used to decrypt the source of the magnetic fabrics (Arbaret et al., 2013; Archanjo & Launeau, 2004; 
Geoffroy et al., 2002; Launeau & Cruden, 1998; Payacán et al., 2014; Petronis et al., 2004; Schöpa et al., 2015). 
SPO analyses have also been conducted using high-resolution X-ray micro-computed tomography imaging 
(µXCT), which offers the opportunity to obtain 3D grain shape and location data on the same sample as analyz-
ed with AMS (Schöpa et al., 2015; Zhu et al., 2017). However, unlike experimental and theoretical approaches 
(Biedermann, 2019, 2020b; Gaillot et al., 2006; Grégoire et al., 1995; Hargraves et al., 1991; Stephenson, 1994), 
petrofabric studies on natural rocks have so far not been able to show a close relationship between DA and the 
AMS ellipsoid axes orientation and shape. The large center to center spacing that occurs between ferrimag-
netic grains in many rock types likely rendered magnetic interactions largely negligible (Grégoire et al., 1998; 
Schöpa et al., 2015). The contribution of DA to the AMS fabric of a sample has therefore not been fully assessed.

Here we address the contribution of DA to magnetic fabrics in natural samples by directly comparing AMS, 
AARM and AIRM data to SPO and DA data generated using a newly developed statistical approach to quan-
tify petrofabrics of µXCT mineral data (Petri et al., 2020). We present a detailed analysis of the petrofabric 
of a hypabyssal trachyandesite from the Chachahuén volcano, Argentina (cf. Burchardt et al., 2019). In the 
trachyandesite, over 50% of ferrimagnetic oxides occur in clusters (see below), this petrographic relation-
ship allows us to directly investigate ferrimagnetic DA in comparison to AMS, AARM and AIRM data.

1.1. The Cerro Bayo Cryptodome

The analyzed samples were collected from the Cerro Bayo cryptodome, which has a volume of >0.3 km3 and 
formed at 6.7 ± 0.3 Ma in the Chachahuén volcanic system, Argentina (Figure S1) (Burchardt et al., 2019; Holm-
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berg, 1962; Kay et al., 2006; Pérez & Condat, 1996). The cryptodome consists of a porphyritic trachyandesite with 
amphibole and plagioclase phenocrysts and accessory phenocrysts of titanomagnetite and clinopyroxene (Fig-
ures 1a–1c) (Burchardt et al., 2019). The amphibole phenocrysts are surrounded by breakdown rims that range 
from 10 to 100 µm in thickness and consist of small (µm in diameter) crystals of titanomagnetite, pyroxene and 
feldspar (Figure 1b). Several amphibole crystals also have oxide inclusions, whereas oxide inclusions are rare in 
the plagioclase phenocrysts. The groundmass is rhyolitic in composition and comprises euhedral to subhedral 
plagioclase and alkali feldspar laths, euhedral to subhedral apatite and pyroxene, and anhedral quartz (Fig-
ure 1a). Plagioclase phenocrysts constitute about 24 vol. % of the rock, amphibole phenocrysts only about 3–7 
vol. %, and magnetite and pyroxene phenocrysts constitute ∼0.5 vol. % and <<1 vol. % of the rock, respectively. 
Plagioclase phenocrysts in the Cerro Bayo occur in glomerocrysts or as individual “free-floating” crystals ori-
ented largely parallel to the amphibole shape-preferred orientation (Figure 1a). The dominant iron oxide in the 
Cerro Bayo trachyandesite has been determined to be titanomagnetite with on average 3.5 wt. % TiO2 and the 
amphibole phenocrysts have been classified as pargasite and hastingsite (Sun, 2018). Interpretations of magma 
flow in the Cerro Bayo cryptodome utilizing the AMS data in this study are presented in Burchardt et al. (2019).

2. Methods
2.1. Magnetic Fabric Analyses

2.1.1. Anisotropy of Magnetic Susceptibility and Thermomagnetic Properties

Five representative, oriented block samples (CB-15, CB-19, CB-46, CB-55 and CB-61) were collected from 
the Cerro Bayo cryptodome and cored to extract 5, 5, 6, 11 and 6 (21 × 24 mm cylinder) specimens, re-
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Figure 1. (a) Plane-polarized microphotograph of plagioclase- (light crystals) and amphibole- (dark and green crystals) 
phyric Cerro Bayo trachyandesite. (b) Back-scattered electron image of amphibole and magnetite phenocrysts in Cerro 
Bayo trachyandesite. Note that the breakdown rims on the amphibole consist of small magnetite and pyroxene crystals. 
(c) Back-scattered electron image of magnetite cluster in Cerro Bayo trachyandesite. (d) Magnetite crystal extracted 
with Blob3D. The magnetite crystals in Cerro Bayo generally have cubic habits. (e) Amphibole crystals extracted with 
Avizo from sample CB-55. The crystals are colored to distinguish different crystals. (f) Three prolate amphibole crystals 
from sample CB-55 separated with Blob3D.
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spectively. AMS measurements were performed in the Laboratory for Experimental Paleomagnetism at the 
Department of Earth Sciences, Uppsala University with an Agico Kappabridge MFK1-FA in semi-auto-
matic spinning mode. A field of 200 A/m and frequency of 976 Hz were used for the measurements. Sym-
metric second rank magnetic susceptibility tensors were determined from the measurements using the 
least square inversion method of Jelínek and Kropáček  (1978). The eigenvalues and eigenvectors of the 
magnetic susceptibility tensor define the value and orientation of the three orthogonal, principal axes of 
susceptibility, k1 ≥ k2 ≥ k3, which can be represented by a triaxial ellipsoid (the magnetic susceptibility ellip-
soid) (Khan, 1962). The mean magnetic susceptibility (Km) is given by the arithmetic mean of the principal 
susceptibilities:

 
 1 2 3k k k

3mK 

The AMS in a rock can be further described by the anisotropy parameter P' (or Pj), and the shape parameter 
T, as originally defined by Jelínek (1981) and calculated with the software Anisoft5 (Chadima et al., 2019). 
The corrected degree of anisotropy is defined as:
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. The shape factor (T) describes the shape of the ellipsoid 

and is given by:
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The ellipsoid shape can range from rotational oblate (T = 1) to rotational prolate (T = −1) or triaxial neutral 
(T ≈ 0).

The thermomagnetic properties of the samples were determined by measuring the bulk magnetic suscepti-
bility on whole-rock powders of the five sample in three steps using the CS-4 attachment of the KLY-5 kap-
pabridge in the M3Ore Lab at the University of St. Andrews. The samples were first cooled to −194°C and 
the susceptibility of the samples was measured until the temperature reached 0°C. The samples were then 
heated at a rate of 12°C/min in an argon atmosphere from room temperature to 700°C and then cooled back 
to room temperature. The heated sample was subsequently again cooled to −194°C and the bulk magnetic 
susceptibility was measured until the sample reached 0°C.

2.1.2. Anisotropy of Magnetic Remanence Analysis

AARM and low-field AIRM were measured on five representative cores or specimens (CB-15C2, CB-19A1, 
CB-46A1, CB-55A1 and CB-61B2). AARM and AIRM measurements allow the determination of a second 
rank symmetric tensor from which eigen parameters similar to the AMS tensor parameters (Jelínek, 1977; 
McCabe et al., 1985). AARM and AIRM measurements were performed at the University of St. Andrews 
M3Ore Lab. Samples were demagnetized and magnetized with AGICO's LDA5 and PAM1 instruments and 
magnetic remanence was measured in the JR-6a spinner magnetometer in a near zero field space. The 
samples were demagnetized using 100 mT alternating field (AF) with an automatic 2-axis tumbling speci-
men holder prior to imparting an anhysteretic remanence magnetization (ARM) on 15 sample orientations 
according to the orientation scheme of Hext (1963) and Jelínek (1977). The ARM was imparted using a bias 
DC field of 50 µT in a peak AF of 100 mT. For AIRM, the samples were imparted with an isothermal rema-
nence magnetization (IRM) in the 15 orientations using a single, one second pulse DC field of 20 mT. The 
samples were demagnetized in a peak AF of 120 mT before imparting the IRM on each position. In order 
to test if phases/grains with higher coercivity, such as SD magnetite, have a different fabric compared to the 
remanence fabric of the full coercivity spectra, we also performed pAARM on the selected cores. To limit 
the potential effects of switching field angular dependence on pAARM (Finn & Coe, 2020; Nørgaard Mad-
sen, 2004), the pAARM was imparted on 12 sample positions (see the supporitng information for analyti-
cal details). The AARM and AIRM data were processed with the REMA6 software (Chadima et al., 2018). 
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Coe (1966) queries the applicability of describing AIRM using a second rank tensor, taking that study into 
account we evaluated the calculated AIRM tensor elements and the results of the evaluation are presented 
in the supporting information (Figure S2).

Stepwise ARM demagnetization and saturation isothermal remanence magnetization (sIRM) measure-
ments were also performed on the samples used for AARM and AIRM analysis (Figure S3). During sIRM 
acquisition, the samples were first magnetized with the PAM1 in DC fields up to 20 mT and later magnet-
ized with an MMPM10 pulse magnetizer from Magnetic Instruments in DC fields between 25 mT and 3 T.

2.2. Petrofabric Analyses Using X-Ray Computed Microtomography

In order to assess the petrofabric, the same five representative specimens (CB-15C2, CB-19A1, CB-46A1, 
CB-55A1 and CB-61B2) were imaged by µXCT. The speciemens were scanned with a Nikon Metrology XT H 
225 ST X-ray microtomograph at the Natural History Museum, University of Oslo. µXCT analyses was con-
ducted using a 140 kV acceleration voltage, a current of 300 µA, 1 s exposure time and 3,016 rotational pro-
jections and using a 0.25 mm copper filter. The X-rays transmitted through the specimen were collected on a 
planar 1,920 × 1,536 pixels detector. The resulting voxel (volume pixel) size was about 16 µm3 (see Table S1).

The obtained stack of 1,534 grayscale images on each core represents the attenuation of the X-rays in the 
scanned volume, that is, phases of higher densities have lighter grayscale voxels and lower density phases 
have darker voxels. Magnetite and amphibole grains have comparatively higher densities than the ground-
mass and can therefore easily be distinguished in the scan slices. Plagioclase phenocrysts could not be sep-
arated from the scan slices due to similar densities as the sample groundmass. Beam-hardening effects are 
visible on the scan slices and are most distinct 1.5–2 mm from the edge of the core. Beam-hardening had no 
effect on magnetite segmentation due to its high attenuation of X-rays, however amphibole segmentation 
was strongly affected. As a consequence, a 1.5–2 mm rim of the scanned core was segmented as a single blob 
and removed from the sample set during the manual separation of the data.

Samples were oriented in the scanner to facilitate direct comparison to AMS and anisotropy of magnetic 
remanence results. However, minor discrepancies in the comparison between AMS and crystal SPO and 
spatial distribution data collected with µXCT could have been induced by differences in sample mounting.

2.2.1. Extraction of Grain Properties From X-Ray Micro-Computed Tomography Scans

X-ray microtomography scan slices were subsequently analyzed using Blob3D (Ketcham, 2005). Six hun-
dred slices of 1,534 (∼40% of the scanned volume) were processed for each specimen in order to limit 
the segmentation time. For specimen CB-61B2, 1,180 of 1,535 slices were processed to separate magnetite 
crystals. Blobs of segmented crystals were created from the stacked slices in Blob3D using grayscale thresh-
old values. Noise in the scan slices was limited by removing islands below a certain pixel radius, as well 
as removing already separated components (only for amphibole segmentation; see Table  S1 for Blob3D 
segmentation parameters). The created blobs were then reviewed, and crystal aggregates were manually 
separated into individual crystals before data extraction. Crystals smaller than 1,000 voxels for amphibole 
and 500 voxels for magnetite were discarded to avoid imaging artifacts. Crystals intersected by the edges of 
the core and processed scan slices were mostly discarded, however, if the shape and length of the intersected 
blob were not compromised by the intersecting surface they were not discarded. For each crystal grain, the 
volume, center x, y, z coordinates and the length and orientation of the three orthogonal principal axes (long 
axis v1; intermediate axis v2; short axis v3) were determined by fitting a best-fit ellipsoid to the separated grain 
volume surfaces in Blob3D.

We validated the accuracy of the phase separation between Blob3D and the commercial software Avizo 
Fire edition (Figure S4). In Avizo, magnetite and amphibole were separated from the scanned cores using 
grayscale thresholding. Magnetite grains smaller than 1,000 to 2,000 voxels and amphibole grains small-
er than 3,000 to 4,000 voxels were removed to limit noise and the erosion tool was employed to remove 
breakdown rims on crystals and imaging artifacts. No individual review of separated crystal volumes was 
performed in Avizo, which resulted in fast extraction of data, but the crystal volumes extracted largely repre-
sent crystal aggregates. The results from Blob3D and Avizo were concordant (see Figure S4): All µXCT data 
presented below were extracted with Blob3D.
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2.2.2. Crystal Orientation and Fabric Determination

The statistical petrofabric analysis was performed with the TomoFab v. 1.3. MATLAB package by using 
either a set of grain principal axes directions, or a set of grain principal axes directions and lengths (see 
details and discussion in Petri et al., 2020). The nomenclature used to describe the magnetic fabrics and the 
petrofabric is given in Table 1.

First, we calculated the mean principal directions (O1, O2, and O3) by constructing the orientation tensor 
(OT) for each principal axis group (v1, v2 and v3), as defined by Scheidegger (1965) and Watson (1966) as:
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with l, m, n being the directional cosines of either v1 or v2 or v3. The mean v1, v2, and v3 orientations (O1, O2 
and O3) were calculated from the OTv1, OTv2, and OTv3 maximum eigenvalues and associated eigenvectors. 
The three resulting mean orientations will likely not be orthogonal, but this approach allows the calcula-
tion of well-established criteria for rock fabric estimates: The K-index of Woodcock (1977) using OTV1 (0 for 
rotational oblate to 1 for triaxial neutral to ∞ for rotational prolate), and the LS-index of Ulrich and Main-
price (2005) using OTV1 and OTV3 (0 for rotational oblate to 0.55–0.6 for triaxial neutral to 1 for rotational 
prolate).

Second, we compiled the fabric tensor (FT) that simultaneously integrates the orientation (l, m, n as direc-
tional cosines) and length ( ,i jvǁ ǁ) of the three principal axes of best-fit ellipsoids (v1 and v2 and v3), weighted 
by the individual axis length (i.e., the linear FT of Petri et al., 2020):
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Magnetic fabrics AMS Anisotropy of magnetic susceptibility

AARM Anisotropy of anhysteretic remanent magnetization

AIRM Anisotropy of isothermal remanent magnetization

Petrofabric OT Orientation tensor

FT Fabric tensor

DA Distribution anisotropy tensor

Ellipsoid axes x1 Long axis

x2 Intermediate axis

x3 Short axis

AMS kx Principal axes of susceptibility of a specimen

Kx Mean tensor of susceptibility of a sample

AARM and AIRM Rx Principal axes of remanence of a specimen

µXCT vx Individual crystal best-fit ellipsoid axes

Ox OT mean best-fit ellipsoid axes

Vx FT mean best-fit ellipsoid axes

λx Distribution anisotropy mean vectors

Table 1 
Abbreviations and Nomenclature
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The eigenvalues and eigenvectors of the FT correspond to the three mean axes (V1 ≥ V2 ≥ V3). The shape of 
the FT ellipsoid can then be projected in Ramsay-type diagrams by calculating the V1/V2 and V2/V3 mean 
axes length ratios, but also by calculating the corrected degree of anisotropy (P') and the shape parameter 
(T) as done with the AMS tensor elements (see above and Petri et al., 2020). The FT approach described here 
also allows one to calculate 95% confidence estimates around the mean principal axes using the method of 
Jelínek and Kropáček (1978). The results of the two approaches are presented in Table 2.

2.2.3. Distribution Anisotropy Analysis

We evaluated the spatial distribution of grains, that is, DA, by calculating directional cosines l, m, n of the 
vector defined by two grain centers, for each couple of grains in the sample segmented using Blob3D. The 
sets of directional cosines, were then used to compile a distribution anisotropy tensor, similar to an OT, and 
defined as:

   
 
    
 
    

2

2

2

j j j j j

j j j j j

j j j j j

wl wl m wl n

DA wm l wm wm n
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Each vector of the directional cosines is here weighted by the w-factor of Stephenson (1994), defined as:
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3w
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with 1 and 2 being the volumes of the two grains, and r the distance between the same two grains. The use 
of the weighting factor implies that large grains that are spatially close together have a stronger influence 
on the result compared to small and distant grains. This also avoids the calculated DA to be affected by the 
shape of the sample (two grains at each side of an elongated sample are unlikely to impact the DA). The 
spatial distribution of grains is deduced from the corrected degree of anisotropy (P') and the shape (T) of the 
ellipsoid defined by the eigenvectors and associated eigenvalues of the DA (λ1 ≥ λ2 ≥ λ3): Low degree of ani-
sotropy (low P') indicates that grains are randomly distributed; high degree of anisotropy (high P') indicates 
that grains are strictly distributed, either in planes if the shape of the DA is oblate (T > 0) or along lines if 
the shape of the DA is prolate (T < 0). The orientation of the planes or lines onto which grains are distrib-
uted are determined by the DA eigenvectors, λ1 being the line, and λ3 the pole to the plane. This method is 
implemented in the Tomofab MATLAB code (version 1.3). We analyzed the DA of the complete data set but 
also as three equivalent subsets of grains based on their volume.

3. Magnetic Properties and Magnetic Fabrics
3.1. Magnetic Properties

At room temperature, the bulk magnetic susceptibility of samples CB-15, CB-19, CB-46, CB-55 and CB-61 
ranges from 16.6 × 10−3 to 4.2 × 10−3 SI (Table 2). The bulk magnetic susceptibility is homogeneous between 
the different specimens of each sample.

At sub-zero temperatures, thermomagnetic susceptibility (T-X) curves of samples CB-19 and CB-46 show 
an increase in bulk magnetic susceptibility between −180 to −160°C before the susceptibility slowly de-
creases until −50°C, this represents the Verwey transition (Figures 2l and 2m). A Verwey transition fea-
ture is not observed in samples CB-15, 55 and 61, instead susceptibility steadily decrease from −194°C to 
−120°C before steadily increasing toward 0°C (Figures 2k, 2n and 2o). During heating from 25°C to 400°C, 
all samples show an inflection at around 300°C. Samples CB-15, 55 and 61, that do not display a Verwey 
transition, exhibit the most abrupt increase in susceptibility (50%–75%), whereas CB-19 and CB-46 exhibit 
relatively modest increase in susceptibility (20%–40%). Heating from 400 to 700°C reveals a prominent de-
crease in susceptibility in all samples between 450°C and 580°C; samples CB-19 and 46 peak between 550°C 
to 580°C, while samples CB15, 55 and 61 exhibit broader peaks ranging from 450°C to 550°C. For all, irre-
versible cooling curves are produced, and the 300°C inflection recorded during heating is absent. Samples 
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AMS Km K1d K1i K1σ K2d K2i K2σ K3d K3i K3σ
Sample N 10−3 SI (std. err.) T P P′ (deg) (deg) (max/min) (deg) (deg) (max/min) (deg) (deg) (max/min)

CB-15C2 16.28 −0.367 1.069 1.07 102 42 2/1 195 3 4/2 289 48 4/1

CB-15 5 16.6 (0.3) −0.387 1.068 1.07 104 37 4/1 197 4 3/1 292 52 4/2

CB-19A1 4.14 −0.421 1.012 1.012 11 42 1/1 224 43 3/1 117 17 3/1

CB-19 5 4.24 (0.31) −0.498 1.013 1.014 13 37 6/3 204 52 12/6 107 5 12/3

CB-46A1 9.65 0.522 1.018 1.018 10 16 1/3 146 68 0/1 276 15 0/0

CB-46 6 9.35 (0.57) 0.287 1.019 1.019 23 12 9/6 142 67 9/1 289 20 8/3

CB-55A1 15.13 0.892 1.07 1.079 317 61 2/0 150 28 2/0 57 6 0/0

CB-55 11 15.25 (0.55) 0.899 1.066 1.074 158 52 52/3 323 38 52/2 59 7 3/2

CB-61B2 11.65 0.785 1.046 1.051 185 38 18/2 63 34 2/18 307 34 2/2

CB-61 6 11.53 (0.46) 0.854 1.045 1.05 185 40 16/4 58 36 16/2 304 30 5/2

AARM Rm R1d R1i R1σ R2d R2i R2σ R3d R3i R3σ

Sample (10−3 A/m) T P P′ (deg) (deg) (E12/E13)a (deg) (deg) (E23/E21) (deg) (deg) (E32/E31)

CB-15C2 46.02 −0.417 1.418 1.432 104 39 61/53 196 2 79/61 288 51 79/53

CB-19A1 9.747 −0.573 1.093 1.099 24 45 89/89 166 38 90/89 273 20 90/89

CB-46A1 21.1 0.455 1.232 1.240 20 22 90/88 141 52 89/90 277 30 89/88

CB-55A1 36.91 0.937 1.312 1.362 323 25 90/81 161 64 82/90 57 7 82/81

CB-61B2 31.47 0.751 1.219 1.241 192 34 82/45 69 38 49/82 308 33 49/45

AIRM Rm R1d R1i R1σ R2d R2i R2σ R3d R3i R3σ

Sample (10−3 A/m) T P P′ (deg) (deg) (E12/E13) (deg) (deg) (E23/E21) (deg) (deg) (E32/E31)

CB-15C2 3.466 −0.273 1.479 1.486 101 42 20/14 196 5 38/20 291 47 38/14

CB-19A1 0.535 0.277 1.07 1.071 37 20 41/18 251 66 27/41 131 13 27/18

CB-46A1 1.286 0.145 1.131 1.132 8 35 23/11 158 52 19/23 267 15 19/11

CB-55A1 3.095 0.926 1.437 1.508 206 82 62/5 324 4 5/62 54 8 5/5

CB-61B2 2.237 0.733 1.278 1.306 163 49 47/9 52 18 11/47 308 36 11/9

Tomofab- FT V1d V1i V1σ V2d V2i V2σ V3d V3i V3σ

Sample Phase N K-index LS T P′ (deg) (deg) (E12/E13) (deg) (deg) (E23/E21) (deg) (deg) (E32/E31)

CB-15C2 Amp 2,635 3.889 0.801 −0.678 1.662 91 40 3/1 188 9 16/3 288 49 16/1

Mgt 2,289 0.284 0.194 0.539 1.076 105 47 52/16 268 42 11/52 6 8 12/17

CB-19A1 Amp 8,336 0.752 0.347 0.077 1.376 175 48 4/1 268 3 4/4 1 42 4/1

Mgt 3,577 0.134 0.117 0.747 1.079 121 48 61/12 278 40 9/61 18 11 10/13

CB-46A1 Amp 5,170 0.408 0.233 0.415 1.404 4 22 6/2 237 56 3/6 104 24 4/2

Mgt 2,470 0.071 0.074 0.959 1.09 202 10 84/13 299 34 13/84 98 55 12/16

CB-55A1 Amp 3,699 0.055 0.044 0.847 1.596 343 72 15/2 134 16 2/15 226 8 3/2

Mgt 2,869 0.048 0.082 0.793 1.099 319 7 63/7 85 78 14/63 228 10 14/6

CB-61B2 Amp 4,126 0.406 0.49 0.308 1.517 134 45 6/1 249 24 3/5 358 36 3/2

Mgt 3,907 0.243 0.229 0.561 1.064 129 55 45/13 337 32 15/45 238 14 17/12

Table 2 
AMS, AARM and Tomofab Fabric, Orientation, Distribution Anisotropy Tensors and Fabric Parameters
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CB-15 and CB-55 show a ∼20% decrease in magnetic susceptibility after cooling, CB-61 exhibits a modest 
5%–10% increase and samples CB-46 and CB-19 display a marked increase in susceptibility of 40% and 500% 
respectively (Figures 2k–2o).

The observation of a Verwey transition at around −170°C and/or Curie temperatures between 540°C and 
580°C show that a low titanium titanomagnetite is the main ferrimagnetic phase in the samples (Dunlop & 
Özdemir, 1997; Lattard et al., 2006). The irreversible inflection at around 300°C on all heating curves indi-
cates that the magnetic mineralogy changed during the experiment. In CB-15, CB-46 and CB-55, a relatively 
modest change of <20% is recorded and this may be attributed to the combined effect of titanium exsolution 
from titanomagnetite and the modification of maghemite during the high temperature experiment (Bilar-
dello, 2020; Dunlop & Özdemir, 1997; Özdemir et al., 1993). Abrupt increases in susceptibility in CB-46 and 
especially in CB-19 show that a substantial amount of new magnetite has formed during the experiment. 
For simplicity, we will refer to low Ti-magnetite as magnetite in subsequent paragraphs.

The ARM AF demagnetization of the samples shows M/Mmax = 0.9 (i.e., when 90% of the imparted field 
is gone) at around an AF of 50 mT for CB-15, 55 and 61 and around an AF of 70 mT for CB-19 and 46 (Fig-
ure S3). The sIRM acquisition curves show that CB-19 and 46 reach 95% saturation in fields ≥400 mT (Fig-
ure S3). Sample CB-19 has the highest coercivity range of all of the samples studied and the thermomagnet-
ic susceptibility experiment shows that this sample also has a very prominent Hopkinson peak (Figure 2l). 
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Table 2 
Continued

O1d O1i O2d O2i O3d O3i

Tomofab-OT Phase N K-index LS T P′ (deg) (deg) (deg) (deg) (deg) (deg)

CB-15C2 Amp 2,635 3.889 0.801 91 41 253 49 346 20

Mgt 2,289 0.284 0.194 108 53 275 25 6 8

CB-19A1 Amp 8,336 0.752 0.347 174 47 283 25 10 32

Mgt 3,577 0.134 0.117 135 67 292 4 19 11

CB-46A1 Amp 5,170 0.408 0.233 5 20 264 30 103 39

Mgt 2,470 0.071 0.074 222 20 318 33 100 54

CB-55A1 Amp 3,699 0.055 0.044 345 73 141 6 227 8

Mgt 2,869 0.048 0.082 320 11 329 50 228 9

CB-61B2 Amp 4,126 0.406 0.49 134 46 345 34 10 32

Mgt 3,907 0.243 0.229 128 52 355 64 237 15

λ1d λ1i λ2d λ2i λ3d λ3i
Nearest 
neighbor

Tomofab-DA Phase N K-index LS T P′ (deg) (deg) (deg) (deg) (deg) (deg) (mm)

CB-15C2 Amp 2,635 0.833 0.091 1.179 269 41 124 43 16 19 –

Mgt 2,289 0.782 0.122 1.254 89 38 191 14 297 49 0.48 (sd. 0.37)

CB-19A1 Amp 8,336 0.171 0.708 1.173 291 51 101 39 195 5 –

Mgt 3,577 1.017 −0.008 1.205 187 44 85 12 344 44 0.42 (s.d. 0.29)

CB-46A1 Amp 5,170 1.624 −0.238 1.12 288 24 18 1 112 66 –

Mgt 2,470 0.074 0.862 1.294 204 58 14 31 106 5 0.53 (s.d. 0.35)

CB-55A1 Amp 3,699 1.223 −0.102 1.074 299 60 109 30 201 4 –

Mgt 2,869 0.367 0.462 1.262 317 56 126 33 220 5 0.45 (s.d. 0.34)

CB-61B2 Amp 4,126 0.393 0.437 1.151 341 27 103 46 233 32 –

Mgt 3,907 0.368 0.462 1.227 130 36 244 29 2 41 0.45 (s.d. 0.38)

Abbreviations: AARM, anisotropy of anhysteretic remanent magnetization; AIRM, anisotropy of isothermal remanent magnetization; AMS, anisotropy of 
magnetic susceptibility.
aThe errors associated with the tensor calculation is much smaller when using the 12-position measurement scheme. See Table S2.
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Together these data indicate that single domain or pseudosingle domain magnetite is present and may play 
a dominant role in the magnetic fabric in this sample (cf. Dunlop & Özdemir, 1997). Sample CB-46 returns 
a similarly high coercivity spectra and also exhibits a prominent Verwey transition and notable Hopkinson 
peak on the thermomagnetic susceptibility curve (Figures 2m and S3). In contrast, CB-15, 55 and 61 reach 
95% saturation at an applied field of ∼300 mT (Figure S3), and exhibit a more gradual Curie temperature 
peak and record no Verwey transition (Figures 2k, 2n and 2o). This points toward the dominance of a rela-
tively low-coercivity ferrimagnetic phase in these samples. The absence of a Verwey transition indicates the 
presence of non-stoichiometric likely oxidized magnetite and/or superparamagnetic (SP) magnetite grains 
in these samples (Moskowitz et al., 1989; Özdemir et al., 1993).

3.2. Magnetic Fabrics

While AMS parameters in the Cerro Bayo intrusion show significant variation between samples (P' = 1.008 
to 1.081 and T = −0.799 to 0.974; Burchardt et al., 2019), sub-samples or specimens collected from each 
sample return highly consistent results. The samples selected for detailed petrofabric µXCT analysis were 
purposefully chosen from a range of samples to include a broad selection of AMS fabric types.

3.2.1. CB-15

The mean AMS ellipsoid for CB-15 AMS has a P' = 1.07 (ranging from 1.068 to 1.073) and a T = −0.39 
(ranging from −0.442 to −0.361), this defines a moderately prolate fabric. Sub-sample AMS axes define very 
narrow confidence ellipses (Figure 2 and Table 2). Both the AARM and AIRM principal axes are coaxial to 
the AMS axes, but have higher P' values (Figure 2 and Table 2).

3.2.2. CB-19

The mean AMS ellipsoid for CB-19 has a P' = 1.01 (ranging from 1.012 to 1.015) and a T = −0.5 (ranging 
from −0.675 to −0.309), this defines a very weak, moderately prolate fabric. The k1 axes are clustered and k2 
and k3 axes define a broad girdle (Figure 2 and Table 2). The principal axes of the AMS, AARM and AIRM 
ellipsoids are slightly oblique and diverge by 15–30°. The pAARM R3 axes of CB-19A1 are coaxial to the 
12-position calculated AARM principal axes, but not the 15-position calculated principal axes (Figures 2, S5 
and Table S2).

3.2.3. CB-46

The mean AMS ellipsoid for CB-46 AMS has a P' = 1.02 (ranging from 1.018 to 1.023) and a T = 0.29 (rang-
ing from 0.522 to 0.131), this defines a weakly anisotropic, transitional oblate fabric. Sub-sample AMS axes 
are tightly clustered (Figure 2 and Table 2). The principal axes of the AMS, AARM, AIRM and pAARM 
ellipsoids plot close to each other (Figure S5 and Table S2).

3.2.4. CB-55

The mean AMS ellipsoid for CB-55 has a P' = 1.07 (ranging from 1.064 to 1.087) and a T = 0.9 (ranging from 
0.91 to 0.599), k3 axes are tightly clustered; k1 and k2 axes plot along a girdle defining an oblate ellipsoid 
(Figure 2 and Table 2). The maximum and intermediate axes of the AMS, AARM and AIRM ellipsoids plot 
along the same girdle, whereas the minimum axes of the AMS, AARM and AIRM are coaxial. The R3 axes 
of the pAARM and AARM are nearly coaxial (Figure S5 and Table S2).
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Figure 2. Anisotropy of magnetic susceptibility (AMS) specimen principal axes (k) and sample mean tensor (K) (a–e) of the cores from sample CB-15, CB-19, 
CB-46, CB-55 and CB-61 plotted in equal-area lower-hemisphere Schmidt-nets. Black arrows indicate the AMS principal axes of CB-15C2, CB-19A1, CB-46A1, 
CB-55A1 and CB-61B2. Confidence ellipses (95%) were calculated with Jelínek statistics. (f–j) Anisotropy of anhysteretic remanence magnetization (AARM) 
and anisotropy of isothermal remanence magnetization (AIRM) principal axes of CB-15C2, CB-19A1, CB-46A1, CB-55A1 and CB-61B2. (k–o) Temperature 
versus susceptibility curves for samples CB-15, CB-19, CB-46, CB-55 and CB-61. See text for details.
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3.2.5. CB-61

The mean AMS ellipsoid for CB-61 has a mean P' = 1.05 (ranging from 
1.046 to 1.055) and a T = 0.85 (ranging from 0.639 to 0.974). k1 and k2 
sub-sample axes define a girdle and k3 axes are clustered, these data de-
scribe a strongly oblate fabric (Figure 2 and Table 2). The AMS, AARM 
and AIRM maximum and intermediate axes plot along a single girdle 
and the corresponding minimum axes are coaxial to one another. The 
pAARM R3 principal axis are nearly coaxial to the AARM R3 (Figure S5 
and Table S2).

4. Petrofabric
4.1. Grain Shape

In total, 15,112 magnetite and 23,966 amphibole grains were separated 
from the five representative scanned cores (see details in Table 2). Mag-
netite and amphibole both occur as individual “free-floating” grains in 
the groundmass and as aggregates (Figures  1a–1f). Even though the 
whole core was not processed with Blob3D, the limited treated vol-
ume still yields >2,000 separated crystals per mineral phase and spec-
imen, which is adequate for crystal population statistics (cf. Mock & 
Jerram, 2005; Morgan & Jerram, 2006). In all five specimens magnetite 
grains have similar crystal habits (Figure 3). Separated single magnetite 
grains are equant, display a nearly cubic crystal habit and have an average 
v1/v3 axis ratio (aspect ratio) of 1.44 (0.24 s.d.) and v1/v2 axis ratio of 1.21 
(0.15 s.d.) (n = 14,828) (Figure 3a). Visual inspection of magnetite crys-
tals with a scanning electron microscope show that magnetite clusters 
consist of both individual crystals with distinct margins and intergrown 
crystals (Figures  1b and  1c). The v1 lengths of extracted crystals range 
from 0.15 to 0.9 mm and the bulk (∼80%) of the total analyzed volume of 
magnetite in the samples is carried by grains with v1 lengths of between 
0.18 and 0.5 mm (Figures 4a and 4b). Crystals that were intersected by 
the edge of the core and scans were excluded from the crystal size distri-
bution and crystal shape analyses. The average distance between mag-
netite crystal centers to its nearest neighbor ranges from 0.53 to 0.42 mm 
(Table 2; Mattsson et al., 2021). About 50%–60% of the magnetite crystals 
in the analyzed samples have a d/r ratio >0.5 and between 40% to 50% of 
the crystals have a ratio >0.8 to its nearest neighbor (see Introduction for 
description of ratio).

The amphibole grains in all specimens are dominantly prolate with an average v1/v3 axis ratio of 3.49 and v1/
v2 axis ratio of 2.71 (n = 22,243) (Figures. 1a, 1b, 1e, 1f and 3b). The v1 lengths of amphiboles extracted from 
the scanned cores range between 0.2 to 5.4 mm (Figure 4c).

4.2. Crystal Shape Preferred Orientations

4.2.1. CB-15

The magnetite long axis (v1) orientations present a moderately defined E-W striking girdle (Figure 5a). Con-
versely, the magnetite short axis (v3) orientations are characterized by a horizontal N-striking cluster. The 
analysis of the FT shows that V1 is located at 105 / 47 and V3 at 006 / 08, both are coaxial with the OT (Fig-
ure 5a and Table 2). The fabric parameters derived from the FT indicate a moderately defined oblate fabric 
(T = 0.54, P' = 1.08), which is consistent for all crystal sizes (Figure 6a; Table S3). The constrained FT-folia-
tion is oriented 186 / 82 (dip-direction).
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Figure 3. Zingg diagram with kernel density estimate (KDE) contours 
of (a) magnetite crystal axial ratios and (b) amphibole compiled from all 
specimens. The lines represent KDE levels for CB-15C2, CB-19A1, CB-
46A1, CB-55A1, CB-61B2.
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In contrast to magnetite, amphibole grains document a fabric that is more 
clearly defined (Figure 5b). v1 orientations present a distinct cluster to the 
east. Conversely, v3 orientations plot along a weak N-S striking girdle that 
dips moderately to the west. The FT governed by the amphibole v1, results 
in a V1 at 091 / 40, which is oriented very close to the O1, whereas the V3 
plots on the v3 girdle at 288 / 49, far from the O3. The fabric parameters 
obtained by the FT analysis indicate a strongly anisotropic, prolate fabric 
(P' = 1.66; T = −0.68), with a weakly constrained foliation at 108 / 41 
(dip-direction).

4.2.2. CB-19

The v1 of magnetite grains are aligned along a steeply dipping E-W girdle 
and v3 axes cluster at the poles of the Schmidt net (Figure 5c). The V1 at 
121 / 48 is not aligned with respect to O1 but still located on the v1-defined 
girdle (Figure 5c and Table 2). The V3 axis at 018 / 11 is almost identical to 
the O3. The FT fabric parameters indicate an oblate (T = 0.75) and mod-
erately anisotropic fabric (P' = 1.08) with a defined foliation at 198 / 79 
(dip-direction).

The amphibole v1 axes define a weakly developed, moderately southward 
dipping girdle; v3 axes define a northward dipping wide cluster (Fig-
ure 5d). The V1 and V3 are oriented at 175 / 48 and 001 / 42, respectively 
(Table 2). A triaxial neutral fabric is indicated by the FT fabric parameters 
(T = 0.08) with a strong degree of anisotropy (P' = 1.38). The foliation 
defined by the FT of amphibole lies at 181 / 48 (dip-direction).

4.2.3. CB-46

The v1 of magnetite grains are aligned along a N-S striking girdle that dips 
moderately to the west and the v3 axes cluster to the east (Figure 5e). The 
V3 axis constrained by the FT at 098 / 55 correlates well with O3, whereas 
the V1 at 202 / 10 is slightly misoriented with respect to O1 (Table 2). The 
analysis of the FT fabric parameters shows a strongly oblate (T = 0.96) 
and moderately anisotropic fabric (P' = 1.09); the defined foliation stands 
at 278 / 35 (dip-direction).

The amphibole v1 axes plot in a moderately developed, sub-vertical 
NNE-striking girdle with a cluster around the poles of the Schmidt net; v3 
orientations define a sub-horizontal cluster (Figure 5f). The mean V1 and 
V3 are coaxial to the OT and oriented at 004 / 22 and 104 / 24, respectively 
(Table 2). The fabric is oblate (T = 0.42) with a strong degree of anisotro-
py (P' = 1.4). The foliation defined by the FT of amphibole lies at 284 / 66 
(dip-direction).

4.2.4. CB-55

The fabric of CB-55 is very well developed for both magnetite and amphi-
boles. Magnetite grains v1 define a clear vertical NW-SE-striking girdle, 

whereas v3 orientations occur in a narrow sub-horizontal cluster (Figure 5g). Both orientations and fabric 
parameters obtained with OT analysis corroborates with the FT analysis (Table 2). The V1 axis is oriented 
319 / 07; V3 axis lies at 228 / 10; and the fabric is strongly oblate and moderately defined (T = 0.79, P' = 1.1). 
The compiled foliation defined by the V1-V2 plane lies at 048 / 80 (dip-direction).

Similarly, amphibole v1 axes define a vertical, NW-SE-striking girdle and a narrow v3 cluster (Figure 5h). 
The FT constructed using the amphibole individual axes and length is coaxial to the OT and points to a V1 
at 343 / 72 and V3 at 226 / 08 with a strongly developed oblate fabric (P' = 1.6; T = 0.85), and a well-defined 
foliation of 046 / 82 (dip-direction).
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Figure 4. (a) Fraction of grains of the total magnetite volume and (b) 
normalized number of magnetite crystals versus crystal long axis length in 
samples CB-15C2, CB-19A1, CB-46A1, CB-55A1 and CB-61B2. Magnetite 
crystals are sorted into 0.03 mm-sized bins based on long-axis length. 
The volume/number of magnetite in a bin was normalized by the total 
volume/number of extracted magnetite grains from the specimen. The 
lines in the plot represent the individual specimens and the histogram 
bars in the background are compiled from all extracted crystals. About 
80% of all magnetite in the specimens is carried by crystals with v1 lengths 
between 0.18 and 0.5 mm. (c) Number of amphibole crystal versus crystal 
v1 length in specimen CB-15C2, CB-19A1, CB-46A1, CB-55A1 and CB-
61B2. Amphibole crystals are sorted into 0.1 mm-sized bins. Crystals that 
were intersected by the edge of the core and scans were excluded from the 
crystal size distribution analyses.



Journal of Geophysical Research: Solid Earth

4.2.5. CB-61

In CB-61, magnetite grains v1 are distributed in a weakly defined vertical NW-SE-striking girdle, whereas v3 
orientations plot in a sub-horizontal cluster in the SW (Figure 5i). Both orientations and fabric parameters 
obtained by OT analysis corroborate results with the FT analysis (Table 2). The V1 axis is oriented 129 / 55; 
V3 axis trend and plunge 238 / 14; and the fabric is oblate (T = 0.56), but with a relatively low degree of 
anisotropy (P' = 1.06). The foliation defined by the V1-V2 plane is oriented 129 / 55 (dip-direction).

Amphibole v1 in CB-61 has a weak moderately southward dipping girdle distribution. The FT calculation 
indicates a strong (P' = 1.52) transitional oblate fabric (T = 0.31) with V3 at 358/36 and a defined foliation 
of 178/54 (dip-direction) (Figure 5j and Table 2).

4.3. Distribution Anisotropy of Magnetite

Here we report the results of the DA of magnetite; results for the DA of amphiboles can be found in the 
supporting information.
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Figure 5. Lower-hemisphere equal-area Schmidt nets showing v1 and v3 orientations and the fabric and orientation tensors for magnetite and amphibole 
populations for sample CB-15C2, CB-19A1, CB-46A1, CB-55A1 and CB-61B2. The v1 and v3 axes are represented with multiples of uniform distribution 
(M.U.D.) contour plots. The mean fabric tensors with confidence ellipses of the tensor analyses created with Tomofab are plotted in lower-hemisphere equal-
area Schmidt nets. Confidence ellipses (95%) were calculated with Jelínek statistics.
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4.3.1. CB-15

The magnetite grains of CB-15 are distributed on a NE-SW girdle (P' = 1.25, T = 0.12; Figure 6a). The DA 
λ1 axes (089 / 38) plots close to the V1 FT axes and together with λ2 define a foliation oriented 117 / 41 
(dip-direction) (Table 2). The analysis of the different grain size categories shows that the magnetite DA is 
strongly anisotropic for small and intermediate grain sizes, but both the orientation and shape of the DA 
vary (Figure 6a).

4.3.2. CB-19

The magnetite grains of CB-19 have a triaxial and moderately defined distribution, as indicated by the fab-
ric parameters of the DA (P' = 1.21, T = −0.01; Figure 6c). The λ1 and λ2 eigenvectors are distributed on a 
southward dipping girdle and define a foliation plane oriented 187 / 44 (dip-direction) that is sub-parallel 
to the magnetite FT foliation. The analysis of the different grain size categories shows that the small grain 
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Figure 6. Comparison between fabric tensors (Vx) and distribution anisotropy (λx) tensors for different crystal populations of the selected cores. The crystals 
were sorted based on their volume and separated into three bins of equal number of crystals. A foliation plane was fitted to the V1-V2 and λ1-λ2 planes if T > 0.
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sizes have a relatively strong and transitional prolate distribution coinciding with the southward-dipping 
girdle. Large and intermediate volume grains define a prolate and transitional prolate fabric with a lineation 
plunging moderately to the SW (Figure 6c; Table S3).

4.3.3. CB-46

The degree of anisotropy and shape of the DA (P' = 1.29 and T = 0.86) indicates that magnetite grains are 
distributed along planar structures (Figure 6e). The orientation of these planes can be assessed by the DA 
eigenvectors, with λ1 being 204 / 58 and λ3 at 106 / 05. The compiled planar structure along which grains 
are aligned are defined by a plane oriented 286 / 86 (dip-direction). The DA of the different grains size cat-
egories display transitional oblate shapes with a high degree of anisotropy (Table S3). However, all the DA 
foliations are oriented at a high angle to the mean FT axes (Figure 6e).

4.3.4. CB-55

The DA of magnetite grains in CB-55 (Figure 6g) shows an oblate distribution (T = 0.46) that is moderately 
anisotropic (P' = 1.26). Magnetite grains are distributed along planes, where the pole to these planes λ3 
(220 / 05) lies close to V3. Although λ1 (317 / 56) is highly misoriented with respect to V1, the compiled folia-
tion defined by the grain spatial distribution (040 / 85, dip-direction) is very close to the foliation defined by 
the shape and the orientation of the grains (i.e., the FT). These characteristics are consistent for all grain size 
categories except for intermediate volume magnetite crystals that have a triaxial distribution (Figure 6g).

4.3.5. CB-61

The DA of magnetite grains in CB-61 (Figure 6i) is oblate (T = 0.46), with a moderate degree of anisotropy 
(P' = 1.23). Magnetite grains are distributed along moderately S-dipping planes, where the pole to these 
planes (λ3 at 002 / 41) coincides with magnetite V2. λ1 (130 / 36) plots close to V1 and the compiled foliation 
defined by the grain spatial distribution (182 / 49, dip-direction) is almost at a right angle to the FT foliation. 
The fabric shape and orientation vary between different grain sizes. The smallest and largest volume grains 
have a prolate distribution and the intermediate volume grains have an oblate distribution (Figure 6i).

5. Interpretation and Discussion
Based on our results, the AMS fabric of the Cerro Bayo trachyandesite may be attributed to three sources: (a) 
The SPO of magnetite grains (Ferré, 2002; Hrouda, 1982); (b) the spatial distribution of the magnetite grains 
across the sample (Cañón-Tapia, 1996, 2001; Gaillot et al., 2006; Hargraves et al., 1991; Stephenson, 1994; 
Grégoire et al., 1995); and (c) the amphibole CPO and composition (Biedermann et al., 2015, 2018). The 
analysis of these three components of the petrofabric shows contrasting relationships in our samples.

5.1. Comparison Between Magnetic Fabrics and Rock Fabrics

The AMS k1 and AARM R1 principal axis in CB-15 are coaxial with the V1 and O1 of both magnetite and 
amphibole (Figure 7a). The magnetite and amphibole SPO are coaxial in terms of maximum principal direc-
tion, but not the intermediate direction. The shape parameters that can be derived from the AMS, AARM, 
amphibole FT, and OT-derived indexes indicate a moderate to strong prolate fabric. The magnetite DA has 
a triaxial shape and is co-axial to amphibole FT and AMS, AARM and AIRM principal axes, but not the 
magnetite FT (Figure 7a). The magnetite DA and the amphibole SPO therefore likely control the princi-
pal directions of the AMS ellipsoid. The non-coaxial oblate magnetite components of the petrofabric may 
destructively interfere, which induce prolate magnetic fabrics controlled by the amphibole SPO and/or the 
intersection lineation between the magnetite components of the petrofabric.

In CB-19, the magnetite FT displays an oblate fabric and the amphibole FT a triaxial fabric with a similar 
east-west strike of the foliation planes, although the inclination of the amphibole FT foliation is distinctly 
shallower (Figures 5c, 5d, 6c and 6d). Magnetite DA is triaxial and plots close to the amphibole FT. The 
AMS and AARM fabrics of CB-19 are prolate and k1 and R1 plunge toward the north, whereas amphibole 
V1 and magnetite λ1 plunge toward the south. Amphibole V3 and magnetite λ3, in turn correlate with k1 and 
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AARM R1. The AIRM fabric is transitional oblate and R1 is co-axial to magnetite V3 (Figure 7b). The AMS 
and AARM fabrics are therefore inverse relative to amphibole FT and magnetite DA, whereas the AIRM 
fabric is inverse relative to the magnetite FT fabric (Figure 7b). The three contrasting petrofabric compo-
nents therefore seem to neutralize the AMS fabric, resulting in very low degree of anisotropy (P'). The AMS 
ellipsoid still reflect the analyzed components of the petrofabric, albeit the principal axes position has been 
flipped relative to the principal axes of the petrofabric ellipsoids.

In CB-46, the k1, k2 and AIRM R1, R2, as well as the λ1 and λ2 of magnetite plot along a subvertical NNE-SSW 
girdle (Figure 7c). The amphibole FT foliation is parallel to the AMS foliation, but dips moderately toward 
west and amphibole v1 axes are clustered toward the poles of the Schmidt net (Figure 5f). The magnetite 
FT shows, however, a strongly oblate fabric that dips gently toward west, although with a similar strike of 
the foliation plane as the amphibole shape and magnetite DA fabrics (Figures 5e, 5f, 6e and 6f). The AMS 
signal correlates well with the magnetite spatial distribution in terms of its foliation (k1–k2 plane), but the 
k1 orientation is in better agreement with the amphibole SPO (Figures 6e and 7c). All petrofabric elements 
that may contribute to the magnetic fabrics are oblate but not co-axial (Figure 7c). The misorientation of 
the petrofabric components results in a competition that neutralizes the AMS shape factor and lowers the 
degree of anisotropy. Among the three components of the petrofabric, the magnetite DA governs the AMS 
foliation, as indicated by their close spatial correlation. However, the orientation of the k1 axis is clearly 
related to the SPO of amphibole and, to some degree, the magnetite SPO (Figure 7c).

In CB-55, the AMS k1 and k2, AARM and AIRM R1 and R2 principal axes plot along the same NW-SE ori-
ented steeply dipping girdle as the amphibole and magnetite O1, V1 and O2, V2, whereas the AMS k3 and 
AARM R3 and the V3, O3 are horizontally clustered to the NE and SW (Figure 7d). Both the magnetite and 
the amphibole in sample CB-55 display a strong v1 girdle distribution and the FTs yield a high shape factor 
(T) (Figure 5g). The AMS shape factor also indicates a strongly oblate fabric. The DA of magnetite displays 
an oblate shape that is coaxial to the other fabric elements (Figure 7d). The principal axes of the magnetic 
fabrics of sample CB-55 are therefore controlled by a combination of magnetite SPO, the magnetite spatial 
distribution and amphibole SPO. The concordance of the three components of the petrofabric in CB-55 
accentuates both the shape parameter and degree of anisotropy.

The volume of the core processed was increased for CB-61 magnetite relative to the other samples because 
the magnetite petrofabric components display a large variation in fabric orientation in the different grain 
sizes (Figure 6i). These large variations in magnetite SPO between different grain sizes result in a relatively 
low degree of anisotropy for the magnetite components of the petrofabric. Magnetite FT is oblate in CB-61 
with a NW-SE striking foliation (Figures 5i and 6i). The orientation of the magnetite FT foliation contrasts 
the magnetite DA and amphibole FT foliations, which are oriented E-W (Figure 6i and Table S3). The AMS, 
AARM, and AIRM ellipsoids are oblate and their foliation strikes NE-SW (Figure 7e). The magnetite DA 
and amphibole SPO are coaxial, whereas the magnetite SPO is oriented at right angle to the amphibole SPO 
and the magnetite DA foliation (Figure 7e). The AMS fabric seems to reflect the competition between the 
relatively weakly anisotropic magnetite DA and magnetite SPO, resulting in the misorientation relative to 
the analyzed components of the petrofabric (Figure 7e).

MATTSSON ET AL.

10.1029/2021JB021895

18 of 23

Figure 7. Lower-hemisphere equal-area Schmidt nets showing the petrofabric and magnetic fabric of the analyzed cores. Only the three components of the 
petrofabric that control the magnetic fabrics are shown on the plots. A foliation plane was fitted to the long (x1) and intermediate (x2) axis of the different 
fabric axes if T > 0. The fabric parameters calculated with the axis length of the different fabrics are plotted in Ramsay-type and Jelínek-type diagrams. (a) CB-
15C2. The V1, k1, R1, λ1 plot close to each other, whereas the magnetite V3 plot along the same girdle as the k2 and k3 and R2 and R3 anisotropy of anhysteretic 
remanence magnetization (AARM) and anisotropy of isothermal remanence magnetization (AIRM) principal axes. V1 and magnetite V1 are both located on the 
magnetite distribution anisotropy (DA) foliation plane, that is, they point in the direction of the plane in which magnetite grains are spatially distributed. (b) 
CB-19A1. k1 and AARM R1 plots close to amphibole V3 and magnetite λ3 and is inverse relative to amphibole V1 and magnetite λ1. The magnetite FT foliation 
strike parallel to the amphibole FT foliation and magnetite DA foliation, however, is more steeply inclined. Fabric parameters show that magnetite FT is oblate, 
whereas the AMS fabric is prolate, amphibole FT and magnetite DA are triaxial. (c) CB-46A1. The amphibole V1 plots close to the k1 and R1 principal axes. The 
magnetite shape fabric is distinctly oblate and dips shallowly to the west and the anisotropy of magnetic susceptibility (AMS) k1 principal axis is located on the 
magnetite V1 and V2 girdle. However, the AMS foliation is steeply dipping and is similar to the magnetite DA foliation. (d) CB-55A1. The V1, V2 of the amphibole 
and magnetite crystals population and the k1, k2, R1, R2 AMS, AIRM and AARM principal axes, as well as the magnetite λ1 and λ2 plot along a NW-SE girdle. 
All fabrics analyzed are parallel as indicated by the tightly clustered short (x3) axes of the different fabrics. (e) CB-61B2. All fabrics are oblate as indicated by 
the fabric shape factors. The magnetite fabric tensor (FT) foliation plane is oriented at a right angle to the magnetite DA and amphibole FT planes. The AMS, 
AARM and AIRM foliation is oriented between the magnetite FT and DA foliations.
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5.2. The Origin of the Magnetic Fabrics

Depending on their relative strength and orientation, the magnetite SPO and DA and amphibole SPO either 
constructively or destructively interfere to produce the AMS fabric in our samples. If all petrofabric ele-
ments are coaxial (CB-55), the AMS P′ is relatively large and the AMS T reflects the near rotational oblate 
shape of the mineral shape fabric (Figure 7d). In samples where the magnetite DA and amphibole SPO are 
coaxial and their foliations are oriented perpendicular to the magnetite SPO foliation (CB-15 and 61) the 
AMS P′ is also moderate to strong (Figures 7a and 7e). The distinct differences in the orientation of the pet-
rofabric components may result in a AMS fabric dominated by some components of the petrofabric (CB-15) 
or magnetic fabrics that represent a mix of the components of the petrofabric (CB-61). However, when the 
magnetite DA, magnetite SPO and amphibole SPO foliations strike parallel, but have different inclinations 
(CB-19 and 46) the AMS P′ is weak (Figures 7b and 7c). The competition between the components of the 
petrofabric may therefore neutralize the degree of anisotropy and the AMS ellipsoid shape.

The larger P' values of the AARM and AIRM tensors compared to the AMS tensor are expected and reflect 
magnetic anisotropies of the remanence carrying phases (cf. Jackson, 1991; McCabe et al., 1985; Stephenson 
et al., 1986) (Figure 7 and Table 2); the high bulk magnetic susceptibility of our samples (>10−3 SI) and the 
positive correlation between AMS, AARM and low-field AIRM indicates that the AMS signal is primarily 
controlled by MD magnetite (Stephenson et al., 1986). Yet, the amphibole FT and AMS are largely co-ax-
ial in our samples (Figure 7). Single-amphibole-crystal AMS show that the k1 axis may correlate with the 
short or intermediate axes (crystallographic a and b axis) of a amphibole crystal and hence not with the 
macroscopic shape fabric (long axis lineation, c axis) for amphibole of a given composition (Biedermann 
et al., 2015, 2018). This may hamper the direct correlation between the amphibole FT (its SPO) and AMS. 
However, magnetite inclusions in paramagnetic minerals have been suggested to amplify the mineral AMS 
signal, which is likely due to the fact that the inclusion shape reflects the shape of the host-silicate crystal 
and cleavage planes (Lagroix & Borradaile, 2000; Renne et al., 2002; Selkin et al., 2014). The small size of 
micrometer-scale magnetite inclusions (likely SD/SP grains) in amphibole alteration rims in our samples 
precludes any analysis of their SPO due to the resolution of our µXCT data. Yet, the AMS signal may be 
largely controlled by their shape and/or spatial distribution (DA), this would explain why AMS and amphi-
bole SPO results are often coaxial when the magnetite SPO is non-coaxial. Plagioclase is the most abundant 
phenocryst phase in the Cerro Bayo trachyandesite and it has previously been shown that plagioclase host 
magnetite inclusions, which may affect the magnetic fabrics of a rock (cf. Ageeva et al., 2020; Feinberg 
et  al.,  2006). However, compared to the amphibole phenocrysts, few magnetite inclusions are observed 
within plagioclase phenocrysts in the Cerro Bayo samples (cf. Figure 1b); we therefore consider that the 
amphibole related fabrics are more likely to influence the magnetic fabrics of the samples rather than the 
plagioclase related fabrics.

Information on the expected SP/SD contribution to each sample's magnetic fabrics is garnered from its co-
ercivity spectra because SD magnetite has higher coercivity than MD magnetite (Dunlop & Özdemir, 1997). 
CB-19 and 46 display relatively higher coercivity and require fields of 300–600 mT to achieve 95% satura-
tion. In contrast CB-15, CB-55 and CB-61 are saturated in fields ≤300 mT (Figure S3). Together with the sus-
ceptibility temperature dependence experiments (Figures 2k–2o), these data suggest that SP/SD magnetite 
makes a relatively greater contribution to the magnetic fabrics of CB-19 and CB-46. Notably, the compo-
nents of the MD magnetite petrofabric in CB-19 and 46 are non-coaxial (Figures 6 and 7). These compo-
nents are expected to interfere destructively with each other and result in a lower degree of anisotropy. To 
investigate the fabric of higher coercivity grains in our samples we employed pAARM. In all samples except 
CB-19, the pAARM R1 and R2 plot along the AMS k1-k2 girdle (Figure S5, Table S2). The R1 and R2 pAARM 
principal directions of CB-19 plot on a NE-dipping girdle and the pAARM R2 axes have flipped position 
with the AIRM and AARM R3 axes (Figures 7b and S5). In CB-19, the magnetic fabrics are inverse relative 
to the three components of the petrofabric, however, the fabric is not magnetically inverse as indicated by 
the co-axial k1 and AARM R1 (Figure 7e). Hence, the AMS fabric of CB-19 is the result of the destructive 
interference between petrofabric components, which lowers the degree of anisotropy and causes higher 
coercivity magnetite grains, likely SD, to influence the position of the k1 axis. The magnetic fabrics in CB-
19 may thus be classified as intermediate fabrics (cf. Ferré, 2002), due to the competing components of the 
petrofabric and the MD and SD (magnetite) magnetic fabrics.
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5.3. The Role of the Distribution Anisotropy

In our samples, the AMS fabric shows a clear correlation to the spatial distribution (i.e., DA) of magnetite. 
As previously established, the effect of the DA of magnetite on AMS becomes significant when ferrimagnet-
ic grains are located close enough to each other to magnetically interact (Cañón-Tapia, 1996, 2001; Gaillot 
et al., 2006; Grégoire et al., 1995, 1998; Hargraves et al., 1991; Stephenson, 1994). The DA of amphibole, 
although being a fabric element that is easy to see in the field, is therefore not significant since amphibole is 
paramagnetic and does not interact magnetically. About 50%–60% of the magnetite crystals in the analyzed 
samples are located close enough to their neighbors to interact magnetically (see Section 4.1.), which vali-
dates the observed effect of the DA on the AMS ellipsoid. Our results further corroborate the results of the 
two-crystal experimental setup of Gaillot et al. (2006), which showed that the degree of anisotropy of AMS 
becomes stronger when the DA is parallel to the SPO compared to when the DA is not parallel to the SPO 
of magnetite crystals. The presence of discordant magnetite DA can overtake the magnetite SPO, leading to 
AMS sub-fabrics, a good example of this relationship is the CB-61 AMS foliation plane (Figure 7e). Notably, 
neither AARM nor low-field AIRM are coaxial to the magnetite FT in samples with competing magnetite 
components of the petrofabric (CB-15, 19, 46 and 61). Instead, they display a similar relationship to the 
magnetite DA as the AMS fabric. This suggests that the magnetic interaction between MD magnetite grains 
can also influence the AARM and AIRM fabrics.

5.4. Implications for the Interpretation of the Anisotropy of Magnetic Susceptibility Fabric

Our results indicate that if rocks include clustered magnetite grains, DA may be the dominant factor con-
trolling AMS, even if a sample is volumetrically magnetically dominated by MD magnetite crystals. Silicate 
SPO may also contribute to the AMS fabric in samples with high magnetic susceptibility if SP/SD magnetite 
is present in mineral breakdown rims and in inclusions. In our samples, the degree of anisotropy reflects 
how each petrofabric component contributes to the AMS and anisotropy of remanence fabrics. Samples 
with relatively high degrees of anisotropy have subfabrics that constructively interfere, that is, the DA is 
parallel to the mineral shape fabrics (FT, OT) of the sample. In the samples with low degrees of anisotropy, 
different components of the petrofabric are generally non-coaxial and destructively interfere with each oth-
er. The AMS may then (a) reflect a combination of shape and DA fabrics of magnetite; (b) be dominated by 
one petrofabric element, but is influenced to some extent by the other sub-fabrics; or (c) be affected by SD/
SP ferrimagnetic grains and result in inverse fabrics relative to the SPO and DA of MD magnetite.

6. Conclusions
In this study we investigated the source of the AMS, AARM and AIRM fabrics in the Cerro Bayo trachyande-
site by using µXCT and novel and established statistical methods to analyze the petrofabric. Specifically, 
magnetite in the Cerro Bayo trachyandesite occurs in clusters, which makes it an ideal target to test how 
far DA influences the orientation and shape of the AMS, AARM and AIRM tensors in a rock dominantly 
carrying MD magnetite. Our results show that:

•  The AMS fabric is related to three components of the petrofabric in the Cerro Bayo trachyandesite: The 
amphibole shape fabric, magnetite shape fabric and magnetite spatial distribution.

•  The DA of magnetite may dominate the AMS, AARM and AIRM fabrics when MD magnetite is the main 
magnetic carrier. This indicate that clusters of magnetite that magnetically interact behave as single 
crystals and can bias the magnetic fabrics.

•  Amphibole SPO may have a secondary effect on the AMS of the samples. The DA of SP/SD magnetite in 
amphibole breakdown rims and as inclusions can affect the overall AMS fabric and essentially reflects 
the amphibole SPO.

The quantitative information provided by µXCT, can therefore help guide the interpretation of AMS and 
AARM, and considerably improve the use of AMS and AARM as quantitative fabric indicators.
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