498 research outputs found

    Urbanização e gestão do litoral centro-sul do estado de Santa Catarina

    Get PDF
    Thirty six municipalities form the littoral of Santa Catarina State. These municipalities are divided in five sectors: north, center-north, center, center–south and south. Six municipalities belong to the center-south littoral and in this sector is located the bigger coastal lagoon chain of the State. Laguna is the faster growing municipality in this region and has the highest number of inhabitants. The rapid and non-organized urbanization of this area has been causing remarkable environmental impacts such as water pollution, sand dune erosion, loss of coastal vegetation and biodiversity. Activities such as prawn farms, agriculture, tourism and urbanization are the most impacting activities. For a sustainable development of the region some actions should be taken, such as: sewage treatment, urban planning,aquiculture zoning, coastal ecosystems preservation, development and implementation of management plan for conservation areas, environmental laws enforcement

    On the road to percent accuracy III: non-linear reaction of the matter power spectrum to massive neutrinos

    Get PDF
    We analytically model the non-linear effects induced by massive neutrinos on the total matter power spectrum using the halo model reaction framework of Cataneo et al. In this approach, the halo model is used to determine the relative change to the matter power spectrum caused by new physics beyond the concordance cosmology. Using standard fitting functions for the halo abundance and the halo mass–concentration relation, the total matter power spectrum in the presence of massive neutrinos is predicted to per cent-level accuracy, out to k=10hMpc−1⁠. We find that refining the prescriptions for the halo properties using N-body simulations improves the recovered accuracy to better than 1 per cent. This paper serves as another demonstration for how the halo model reaction framework, in combination with a single suite of standard Λ cold dark matter (ΛCDM) simulations, can recover per cent-level accurate predictions for beyond ΛCDM matter power spectra, well into the non-linear regime

    Transcranial cortico-cortical paired associative stimulation (ccPAS) over ventral premotor-motor pathways enhances action performance and corticomotor excitability in young adults more than in elderly adults

    Get PDF
    Transcranial magnetic stimulation (TMS) methods such as cortico-cortical paired associative stimulation (ccPAS) can increase the strength of functional connectivity between ventral premotor cortex (PMv) and primary motor cortex (M1) via spike timing-dependent plasticity (STDP), leading to enhanced motor functions in young adults. However, whether this STDP-inducing protocol is effective in the aging brain remains unclear. In two groups of young and elderly healthy adults, we evaluated manual dexterity with the 9-hole peg task before and after ccPAS of the left PMv-M1 circuit. We observed that ccPAS enhanced dexterity in young adults, and this effect was anticipated by a progressive increase in motor-evoked potentials (MEPs) during ccPAS administration. No similar effects were observed in elderly individuals or in a control task. Across age groups, we observed that the magnitude of MEP changes predicted larger behavioral improvements. These findings demonstrate that left PMv-to-M1 ccPAS induces functionally specific improvements in young adults' manual dexterity and an increase in corticomotor excitability, but altered plasticity prevents the effectiveness of ccPAS in the elderly

    Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions

    Get PDF
    The posterior superior temporal sulcus (pSTS) is a critical node in a network specialized for perceiving emotional facial expressions that is reciprocally connected with early visual cortices (V1/V2). Current models of perceptual decision-making increasingly assign relevance to recursive processing for visual recognition. However, it is unknown whether inducing plasticity into reentrant connections from pSTS to V1/V2 impacts emotion perception. Using a combination of electrophysiological and neurostimulation methods, we demonstrate that strengthening the connectivity from pSTS to V1/V2 selectively increases the ability to perceive facial expressions associated with emotions. This behavior is associated with increased electrophysiological activity in both these brain regions, particularly in V1/V2, and depends on specific temporal parameters of stimulation that follow Hebbian principles. Therefore, we provide evidence that pSTS-to-V1/V2 back-projections are instrumental to perception of emotion from facial stimuli and functionally malleable via manipulation of associative plasticity. Temporo-occipital areas are involved in perceiving emotional faces

    On the road to per cent accuracy - V. The non-linear power spectrum beyond ΛCDM with massive neutrinos and baryonic feedback

    Get PDF
    In the context of forthcoming galaxy surveys, to ensure unbiased constraints on cosmology and gravity when using non-linear structure information, per cent-level accuracy is required when modelling the power spectrum. This calls for frameworks that can accurately capture the relevant physical effects, while allowing for deviations from Lambda cold dark matter (ΛCDM). Massive neutrino and baryonic physics are two of the most relevant such effects. We present an integration of the halo model reaction frameworks for massive neutrinos and beyond ΛCDM cosmologies. The integrated halo model reaction, combined with a pseudo-power spectrum modelled by HMCode2020 is then compared against N-body simulations that include both massive neutrinos and an f(R) modification to gravity. We find that the framework is 4 per cent accurate down to at least ≈ 3 h Mpc-1 for a modification to gravity of |fR0| ≀ 10-5 and for the total neutrino mass MÎœ ÎŁmÎœ ≀ 0.15 eV. We also find that the framework is 4 per cent consistent with EuclidEmulator2 as well as the Bacco emulator for most of the considered ÎœwCDM cosmologies down to at least k ≈ 3 h Mpc-1. Finally, we compare against hydrodynamical simulations employing HMCode2020's baryonic feedback modelling on top of the halo model reaction. For ΜΛCDM cosmologies, we find 2 per cent accuracy for MÎœ ≀ 0.48 eV down to at least k ≈ 5h Mpc-1. Similar accuracy is found when comparing to ÎœwCDM hydrodynamical simulations with MÎœ = 0.06 eV. This offers the first non-linear, theoretically general means of accurately including massive neutrinos for beyond-ΛCDM cosmologies, and further suggests that baryonic, massive neutrino, and dark energy physics can be reliably modelled independently

    On the road to per cent accuracy - V. The non-linear power spectrum beyond Lambda CDM with massive neutrinos and baryonic feedback

    Get PDF
    In the context of forthcoming galaxy surveys, to ensure unbiased constraints on cosmology and gravity when using non-linear structure information, per cent-level accuracy is required when modelling the power spectrum. This calls for frameworks that can accurately capture the relevant physical effects, while allowing for deviations from Lambda cold dark matter (ΛCDM). Massive neutrino and baryonic physics are two of the most relevant such effects. We present an integration of the halo model reaction frameworks for massive neutrinos and beyond ΛCDM cosmologies. The integrated halo model reaction, combined with a pseudo-power spectrum modelled by HMCode2020 is then compared against N-body simulations that include both massive neutrinos and an f(R) modification to gravity. We find that the framework is 4 per cent accurate down to at least k≈3hMpc−1 for a modification to gravity of |fR0| ≀ 10−5 and for the total neutrino mass MÎœ ≡ ∑mÎœ ≀ 0.15 eV. We also find that the framework is 4 per cent consistent with EuclidEmulator2 as well as the Bacco emulator for most of the considered ÎœwCDM cosmologies down to at least k≈3h Mpc−1. Finally, we compare against hydrodynamical simulations employing HMCode2020’s baryonic feedback modelling on top of the halo model reaction. For ΜΛCDM cosmologies, we find 2 per cent accuracy for MÎœ ≀ 0.48 eV down to at least k ≈ 5h Mpc−1. Similar accuracy is found when comparing to ÎœwCDM hydrodynamical simulations with MÎœ = 0.06 eV. This offers the first non-linear, theoretically general means of accurately including massive neutrinos for beyond-ΛCDM cosmologies, and further suggests that baryonic, massive neutrino, and dark energy physics can be reliably modelled independently

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    • 

    corecore