292 research outputs found
Hand classification of fMRI ICA noise components
We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets
The effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease
We have previously identified a network of higher-order brain regions particularly vulnerable to the ageing process, schizophrenia and Alzheimer's disease. However, it remains unknown what the genetic influences on this fragile brain network are, and whether it can be altered by the most common modifiable risk factors for dementia. Here, in ~40,000 UK Biobank participants, we first show significant genome-wide associations between this brain network and seven genetic clusters implicated in cardiovascular deaths, schizophrenia, Alzheimer's and Parkinson's disease, and with the two antigens of the XG blood group located in the pseudoautosomal region of the sex chromosomes. We further reveal that the most deleterious modifiable risk factors for this vulnerable brain network are diabetes, nitrogen dioxide - a proxy for traffic-related air pollution - and alcohol intake frequency. The extent of these associations was uncovered by examining these modifiable risk factors in a single model to assess the unique contribution of each on the vulnerable brain network, above and beyond the dominating effects of age and sex. These results provide a comprehensive picture of the role played by genetic and modifiable risk factors on these fragile parts of the brain
One-year changes in brain microstructure differentiate preclinical Huntington's disease stages.
OBJECTIVE: To determine whether brain imaging markers of tissue microstructure can detect the effect of disease progression across the preclinical stages of Huntington's disease. METHODS: Longitudinal microstructural changes in diffusion imaging metrics (mean diffusivity and fractional anisotropy) were investigated in participants with presymptomatic Huntington's disease (N = 35) stratified into three preclinical subgroups according to their estimated time until onset of symptoms, compared with age- and gender-matched healthy controls (N = 19) over a 1y period. RESULTS: Significant differences were found over the four groups in change of mean diffusivity in the posterior basal ganglia and the splenium of the corpus callosum. This overall effect was driven by significant differences between the group far-from-onset (FAR) of symptoms and the groups midway- (MID) and near-the-onset (NEAR) of symptoms. In particular, an initial decrease of mean diffusivity in the FAR group was followed by a subsequent increase in groups closer to onset of symptoms. The seemingly counter-intuitive decrease of mean diffusivity in the group furthest from onset of symptoms might be an early indicator of neuroinflammatory process preceding the neurodegenerative phase. In contrast, the only clinical measure that was able to capture a difference in 1y changes between the preclinical stages was the UHDRS confidence in motor score. CONCLUSIONS: With sensitivity to longitudinal changes in brain microstructure within and between preclinical stages, and potential differential response to distinct pathophysiological mechanisms, diffusion imaging is a promising state marker for monitoring treatment response and identifying the optimal therapeutic window of opportunity in preclinical Huntington's disease
SARS-CoV-2 is associated with changes in brain structure in UK Biobank
There is strong evidence of brain-related abnormalities in COVID-191,2,3,4,5,6,7,8,9,10,11,12,13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51–81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans—with 141 days on average separating their diagnosis and the second scan—as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up
Amplitudes of resting-state functional networks – investigation into their correlates and biophysical properties
Resting-state fMRI studies have shown that multiple functional networks, which consist of distributed brain regions that share synchronised spontaneous activity, co-exist in the brain. As these resting-state networks (RSNs) have been thought to reflect the brain's intrinsic functional organization, intersubject variability in the networks' spontaneous fluctuations may be associated with individuals' clinical, physiological, cognitive, and genetic traits. Here, we investigated resting-state fMRI data along with extensive clinical, lifestyle, and genetic data collected from 37,842 UK Biobank participants, with the object of elucidating intersubject variability in the fluctuation amplitudes of RSNs. Functional properties of the RSN amplitudes were first examined by analyzing correlations with the well-established between-network functional connectivity. It was found that a network amplitude is highly correlated with the mean strength of the functional connectivity that the network has with the other networks. Intersubject clustering analysis showed the amplitudes are most strongly correlated with age, cardiovascular factors, body composition, blood cell counts, lung function, and sex, with some differences in the correlation strengths between sensory and cognitive RSNs. Genome-wide association studies (GWASs) of RSN amplitudes identified several significant genetic variants reported in previous GWASs for their implications in sleep duration. We provide insight into key factors determining RSN amplitudes and demonstrate that intersubject variability of the amplitudes primarily originates from differences in temporal synchrony between functionally linked brain regions, rather than differences in the magnitude of raw voxelwise BOLD signal changes. This finding additionally revealed intriguing differences between sensory and cognitive RSNs with respect to sex effects on temporal synchrony and provided evidence suggesting that synchronous coactivations of functionally linked brain regions, and magnitudes of BOLD signal changes, may be related to different genetic mechanisms. These results underscore that intersubject variability of the amplitudes in health and disease need to be interpreted largely as a measure of the sum of within-network temporal synchrony and amplitudes of BOLD signals, with a dominant contribution from the former
Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging
A key aim in epidemiological neuroscience is identification of markers to assess brain health and monitor therapeutic interventions. Quantitative susceptibility mapping (QSM) is an emerging magnetic resonance imaging technique that measures tissue magnetic susceptibility and has been shown to detect pathological changes in tissue iron, myelin and calcification. We present an open resource of QSM-based imaging measures of multiple brain structures in 35,273 individuals from the UK Biobank prospective epidemiological study. We identify statistically significant associations of 251 phenotypes with magnetic susceptibility that include body iron, disease, diet and alcohol consumption. Genome-wide associations relate magnetic susceptibility to 76 replicating clusters of genetic variants with biological functions involving iron, calcium, myelin and extracellular matrix. These patterns of associations include relationships that are unique to QSM, in particular being complementary to T2* signal decay time measures. These new imaging phenotypes are being integrated into the core UK Biobank measures provided to researchers worldwide, creating the potential to discover new, non-invasive markers of brain health
The Neurocognitive Architecture of Individual Differences in Math Anxiety in Typical Children
Math Anxiety (MA) is characterized by a negative emotional response when facing math-related situations. MA is distinct from general anxiety and can emerge during primary education. Prior studies typically comprise adults and comparisons between high- versus low-MA, where neuroimaging work has focused on differences in network activation between groups when completing numerical tasks. The present study used voxel-based morphometry (VBM) to identify the structural brain correlates of MA in a sample of 79 healthy children aged 7–12 years. Given that MA is thought to develop in later primary education, the study focused on the level of MA, rather than categorically defining its presence. Using a battery of cognitive- and numerical-function tasks, we identified that increased MA was associated with reduced attention, working memory and math achievement. VBM highlighted that increased MA was associated with reduced grey matter in the left anterior intraparietal sulcus. This region was also associated with attention, suggesting that baseline differences in morphology may underpin attentional differences. Future studies should clarify whether poorer attentional capacity due to reduced grey matter density results in the later emergence of MA. Further, our data highlight the role of working memory in propagating reduced math achievement in children with higher MA
Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis
Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases
Multimodal population brain imaging in the UK Biobank prospective epidemiological study
Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank
- …