182 research outputs found

    New Evidence of Holocene Mass Wasting Events in Recent Volcanic Lakes from the French Massif Central (Lakes Pavin, Montcineyre and Chauvet) and Implications for Natural Hazards

    Get PDF
    International audienceHigh-resolution seismic profiling (12 kHz) surveys combined with sediment cores, radiocarbon dating, tephrochronology and multibeam bathymetry (when available) allow documentation of a range of Holocene mass wasting events in nearby contrasting lakes of volcanic origin in the French Massif Central (45°N, 2°E): two deep maar lakes (Pavin and Chauvet) and a shallow lake (Montcineyre) dammed by the growth of a volcano. In these lacustrine environments dominated by authigenic sedimentation, recent slide scars, acoustically transparent to chaotic lens-shaped bodies, slump deposits or reworked regional tephra layers suggest that subaqueous mass wasting processes may have been favoured by gas content in the sediments and lake level changes. While these events may have had a limited impact in both lakes Chauvet and Montcineyre, they apparently favoured the development of lacustrine meromicticity in maar Lake Pavin along with possible subaerial debris flows resulting from crater outburst events

    Isotopic evidence for iron mobility during subduction

    Get PDF
    Subduction zones are one of the most important sites of chemical interchange between the Earth's surface and interior. One means of explaining the high Fe3+/ΣFe ratios and oxidized nature of primary arc magmas is the transfer of sulfate (SOX), carbonate (CO3 -), and/or iron (Fe3+) bearing fluids from the slab to the overlying mantle. Iron mobility and Fe stable isotope fractionation in fluids are influenced by Fe redox state and the presence of chlorine and/or sulfur anions. Here we use Fe stable isotopes (δ56Fe) as a tracer of iron mobility in serpentinites from Western Alps metaophiolites, which represent remnants of oceanic lithosphere that have undergone subduction-related metamorphism and devolatilization. A negative correlation (R2 = 0.72) is observed between serpentinite bulk δ56Fe and Fe3+/ΣFe that provides the first direct evidence for the release of Fe-bearing fluids during serpentinite devolatilization in subduction zones. The progressive loss of isotopically light Fe from the slab with increasing degree of prograde metamorphism is consistent with the release of sulfate-rich and/or hypersaline fluids, which preferentially complex isotopically light Fe in the form of Fe(II)-SOX or Fe(II)- Cl2 species. Fe isotopes can therefore be used as a tracer of the nature of slab-derived fluids. © 2016 Geological Society of America

    North western Alps Holocene paleohydrology recorded by flooding activity in Lake Le Bourget, France and possible relations with Mont-Blanc glaciers fluctuations

    Get PDF
    International audienceA 14-m long piston core was retrieved from Lake Le Bourget, NWAlps (France), in order to provide a continuous record of flooding events of the Rhone River during the Holocene. The selection of the coring site was based on high resolution seismic profiling, in an area with limited mass wasting deposits and accumulated proximal Rhone River inter-and underflow deposits. The age-depth model of this core is based on (i) 14 AMS radiocarbon dates, (ii)radionuclide dating(137Cs) and (iii) the identification of historical data (flood events, eutrophication of the lake).The sedimentary record dates back to 9400 cal BP, and includes a thin mass wasting event deposited around 4500 cal BP. A multi-proxy approach was used to track the evolution and origin of clastic sedimentation during the Holocene, in order to identify periods of higher hydrologic al activity in the catchment area. Spectrophotometry was used to detect fluctuations in clastic supply and the study of clay minerals (especially the Illite crystallinity index) allowed locating the main source area of fine grained clastic particles settling at the lake after flood events. This dataset highlights up to 12 periods of more intense flooding events over the last 9400 years in Lake Le Bourget and shows that the main source area of clastic particles during this period is the upper part of the Arve River drainage basin. This part of the catchment area drains several large glaciers from the Mont-Blanc Massif, and fluctuations in Rhone River flood supply in Lake Le Bourget is interpreted as resulting essentially from Mont-Blanc Glacier activity during the Holocene.The comparison of clastic sedimentationin Lake Le Bourget with periods of increasing land use and periods of Alpine glacier and mid-European lake level fluctuations, suggest that the core LDB04 clastic record in Lake Le Bourget is a continuous proxy of the Holocene hydrologic al history of the NW Alps

    Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    Get PDF
    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL–Ti isotope standard, the δ49Ti values of terrestrial samples vary from −0.05 to +0.55‰, whereas those of lunar mare basalts vary from −0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of View the MathML source. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n=29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite–melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions

    The origin of the 1500-year climate cycles in Holocene North-Atlantic records

    Get PDF
    © 2007 Author(s) et al. This is an open-access article distributed under a Creative Commons License. The definitive version was published in Climate of the Past 3 (2007): 569-575, doi:10.5194/cp-3-569-2007Since the first suggestion of 1500-year cycles in the advance and retreat of glaciers (Denton and Karlen, 1973), many studies have uncovered evidence of repeated climate oscillations of 2500, 1500, and 1000 years. During last glacial period, natural climate cycles of 1500 years appear to be persistent (Bond and Lotti, 1995) and remarkably regular (Mayewski et al., 1997; Rahmstorf, 2003), yet the origin of this pacing during the Holocene remains a mystery (Rahmstorf, 2003), making it one of the outstanding puzzles of climate variability. Solar variability is often considered likely to be responsible for such cyclicities, but the evidence for solar forcing is difficult to evaluate within available data series due to the shortcomings of conventional time-series analyses. However, the wavelets analysis method is appropriate when considering non-stationary variability. Here we show by the use of wavelets analysis that it is possible to distinguish solar forcing of 1000- and 2500- year oscillations from oceanic forcing of 1500-year cycles. Using this method, the relative contribution of solar-related and ocean-related climate influences can be distinguished throughout the 10 000 yr Holocene intervals since the last ice age. These results reveal that the 1500-year climate cycles are linked with the oceanic circulation and not with variations in solar output as previously argued (Bond et al., 2001). In this light, previously studied marine sediment (Bianchi and McCave, 1999; Chapman and Shackleton, 2000; Giraudeau et al., 2000), ice core (O'Brien et al., 1995; Vonmoos et al., 2006) and dust records (Jackson et al., 2005) can be seen to contain the evidence of combined forcing mechanisms, whose relative influences varied during the course of the Holocene. Circum-Atlantic climate records cannot be explained exclusively by solar forcing, but require changes in ocean circulation, as suggested previously (Broecker et al., 2001; McManus et al., 1999).This work is supported by ANR project: “Integration des contraintes Paleoclimatiques pour reduire les Incertitudes sur l’evolution du Climat pendant les periodes Chaudes”- PICC (ANR-05-BLAN- 0312-02)

    Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones

    Get PDF
    Subduction zones modulate the chemical evolution of the Earth?s mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes ( \ensuremathδ 66 Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab- derived fluids. We show that the progressive decrease in \ensuremathδ 66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42- complexes preferentially incorporate heavy \ensuremathδ 66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.This work was supported by an ERC Starting Grant (HabitablePlanet; 306655) and a NERC Deep Volatiles Consortium Grant (NE/M0003/1) awarded to H.W. H.W. and P.B. also acknowledge salary support from a NERC Advanced Fellowship (NE/F014295/2) and ERC Starting Grant (279828, MASE), respectivel

    Comparison of earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) Fjords: implications for paleoseismicity and sedimentology

    Get PDF
    International audienceHigh-resolution seismic profiles along with physical and sedimentological properties of sediment cores from the Saguenay (Eastern Canada) and Reloncavi (Chile) Fjords allowed the identification of several decimeter to meter-thick turbidites. In both fjords, the turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M > 7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M ~ 8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In the Saguenay Fjord, the earthquake-triggered turbidites are sometimes underlying a hyperpycnite associated with the rapid breaching and draining of a natural dam formed by earthquake-triggered landslides. Similar hyperpycnal floods were also recorded in historical and continental geological archives for the 1960 and 1575 AD Chilean subduction earthquakes, highlighting the risk of such flood events several weeks or months after main earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, this paper also emphasizes the sensitivity of fjords to record historic and pre-historic seismicity

    The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    Get PDF
    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction

    Arctic hydroclimate variability during the last 2000 years : current understanding and research challenges

    Get PDF
    Reanalysis data show an increasing trend in Arctic precipitation over the 20th century, but changes are not homogenous across seasons or space. The observed hydro-climate changes are expected to continue and possibly accelerate in the coming century, not only affecting pan-Arctic natural ecosystems and human activities, but also lower latitudes through the atmospheric and ocean circulations. However, a lack of spatiotemporal observational data makes reliable quantification of Arctic hydroclimate change difficult, especially in a long-term context. To understand Arctic hydroclimate and its variability prior to the instrumental record, climate proxy records are needed. The purpose of this review is to summarise the current understanding of Arctic hydroclimate during the past 2000 years. First, the paper reviews the main natural archives and proxies used to infer past hydroclimate variations in this remote region and outlines the difficulty of disentangling the moisture from the temperature signal in these records. Second, a comparison of two sets of hydroclimate records covering the Common Era from two data-rich regions, North America and Fennoscandia, reveals inter- and intra-regional differences. Third, building on earlier work, this paper shows the potential for providing a high-resolution hydroclimate reconstruction for the Arctic and a comparison with last-millennium simulations from fully coupled climate models. In general, hydroclimate proxies and simulations indicate that the Medieval Climate Anomaly tends to have been wetter than the Little Ice Age (LIA), but there are large regional differences. However, the regional coverage of the proxy data is inadequate, with distinct data gaps in most of Eurasia and parts of North America, making robust assessments for the whole Arctic impossible at present. To fully assess pan-Arctic hydroclimate variability for the last 2 millennia, additional proxy records are required.Peer reviewe

    Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation:Application to the Seine river catchment, France

    Get PDF
    (IF 3.73; Q1)International audienceIn the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations.In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations.The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 – decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 – generating a statistical downscaling model per time-scale, 3 – summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation
    corecore