CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Isotopic evidence for iron mobility during subduction
Authors
P. Bouilhol
B. Debret
+4 more
E. Inglis
M.-A. Millet
M.-L. Pons
H. Williams
Publication date
Publisher
'Geological Society of America'
Doi
Cite
Abstract
Subduction zones are one of the most important sites of chemical interchange between the Earth's surface and interior. One means of explaining the high Fe3+/ΣFe ratios and oxidized nature of primary arc magmas is the transfer of sulfate (SOX), carbonate (CO3 -), and/or iron (Fe3+) bearing fluids from the slab to the overlying mantle. Iron mobility and Fe stable isotope fractionation in fluids are influenced by Fe redox state and the presence of chlorine and/or sulfur anions. Here we use Fe stable isotopes (δ56Fe) as a tracer of iron mobility in serpentinites from Western Alps metaophiolites, which represent remnants of oceanic lithosphere that have undergone subduction-related metamorphism and devolatilization. A negative correlation (R2 = 0.72) is observed between serpentinite bulk δ56Fe and Fe3+/ΣFe that provides the first direct evidence for the release of Fe-bearing fluids during serpentinite devolatilization in subduction zones. The progressive loss of isotopically light Fe from the slab with increasing degree of prograde metamorphism is consistent with the release of sulfate-rich and/or hypersaline fluids, which preferentially complex isotopically light Fe in the form of Fe(II)-SOX or Fe(II)- Cl2 species. Fe isotopes can therefore be used as a tracer of the nature of slab-derived fluids. © 2016 Geological Society of America
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
ESC Publications - Cambridge Univesity
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.esc.cam.ac.uk:3677
Last time updated on 09/08/2016