463 research outputs found
Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86
Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy γ-ray emission. Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5–1 keV X-ray band, the 2–5 keV X-ray band, radio, and γ-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results. We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparison with 2–5 keV X-ray data reveals a correlation with the 0.4–50 TeV γ-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to ~0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 μG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E−2 spectrum for the proton distribution cannot describe the γ-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ∼7 × 1049/ncm−3 has been transferred into high-energy protons with the effective density ncm−3 = n/1 cm−3. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm−3
Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics
Very-high energy (VHE) gamma quanta contribute only a minuscule fraction -
below one per million - to the flux of cosmic rays. Nevertheless, being neutral
particles they are currently the best "messengers" of processes from the
relativistic/ultra-relativistic Universe because they can be extrapolated back
to their origin. The window of VHE gamma rays was opened only in 1989 by the
Whipple collaboration, reporting the observation of TeV gamma rays from the
Crab nebula. After a slow start, this new field of research is now rapidly
expanding with the discovery of more than 150 VHE gamma-ray emitting sources.
Progress is intimately related with the steady improvement of detectors and
rapidly increasing computing power. We give an overview of the early attempts
before and around 1989 and the progress after the pioneering work of the
Whipple collaboration. The main focus of this article is on the development of
experimental techniques for Earth-bound gamma-ray detectors; consequently, more
emphasis is given to those experiments that made an initial breakthrough rather
than to the successors which often had and have a similar (sometimes even
higher) scientific output as the pioneering experiments. The considered energy
threshold is about 30 GeV. At lower energies, observations can presently only
be performed with balloon or satellite-borne detectors. Irrespective of the
stormy experimental progress, the success story could not have been called a
success story without a broad scientific output. Therefore we conclude this
article with a summary of the scientific rationales and main results achieved
over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic
rays, gamma rays and neutrinos: A survey of 100 years of research
Simulations of stellar/pulsar wind interaction along one full orbit
The winds from a non-accreting pulsar and a massive star in a binary system
collide forming a bow-shaped shock structure. The Coriolis force induced by
orbital motion deflects the shocked flows, strongly affecting their dynamics.
We study the evolution of the shocked stellar and pulsar winds on scales in
which the orbital motion is important. Potential sites of non-thermal activity
are investigated. Relativistic hydrodynamical simulations in two dimensions,
performed with the code PLUTO and using the adaptive mesh refinement technique,
are used to model interacting stellar and pulsar winds on scales ~80 times the
distance between the stars. The hydrodynamical results suggest the suitable
locations of sites for particle acceleration and non-thermal emission. In
addition to the shock formed towards the star, the shocked and unshocked
components of the pulsar wind flowing away from the star terminate by means of
additional strong shocks produced by the orbital motion. Strong instabilities
lead to the development of turbulence and an effective two-wind mixing in both
the leading and trailing sides of the interaction structure, which starts to
merge with itself after one orbit. The adopted moderate pulsar-wind Lorentz
factor already provides a good qualitative description of the phenomena
involved in high-mass binaries with pulsars, and can capture important physical
effects that would not appear in non-relativistic treatments. Simulations show
that shocks, instabilities, and mass-loading yield efficient mass, momentum,
and energy exchanges between the pulsar and the stellar winds. This renders a
rapid increase in the entropy of the shocked structure, which will likely be
disrupted on scales beyond the simulated ones. Several sites of particle
acceleration and low- and high-energy emission can be identified. Doppler
boosting will have significant and complex effects on radiation.Comment: 8 pages, 11 figures, Astronomy and Astrophysics, in press, minor
changes after acceptanc
VLT Suzaku observations of the Fermi pulsar PSR J1028-5819
We used optical images taken with the Very Large Telescope (VLT) in the B and
V bands to search for the optical counterpart of PSR J1028-5819 or constrain
its optical brightness. At the same time, we used an archival Suzaku
observation to confirm the preliminary identification of the pulsar's X-ray
counterpart obtained by Swift. Due to the large uncertainty on the pulsar's
radio position and the presence of a bright (V = 13.2) early F-type star at <
4", we could not detect its counterpart down to flux limits of B~25.4 and V
~25.3, the deepest obtained so far for PSR J1028-5819. From the Suzaku
observations, we found that the X-ray spectrum of the pulsar's candidate
counterpart is best-fit by a power-law with spectral index 1.7 +/- 0.2 and an
absorption column density NH < 10^21 cm-2, which would support the proposed
X-ray identification. Moreover, we found possible evidence for the presence of
diffuse emission around the pulsar. If real, and associated with a pulsar wind
nebula (PWN), its surface brightness and angular extent would be compatible
with the expectations for a ~100 kyr old pulsar at the PSR J1028-5819 distance.Comment: 10 pages, 9 figures, submitted to Astronomy and Astrophysic
Galactic Structure Toward the Carina Tangent
This investigation presents a photometric study of the Galactic structure
toward the Carina arm tangent. The field is located between 280 deg and 286 deg
galactic longitude and -4 deg to 4 deg galactic latitude. All currently
available uvbybeta data is used to obtain homogeneous color excesses and
distances for more than 260 stars of spectral types O to G. We present revised
distances and average extinction for the open clusters and cluster candidates
NGC 3293, NGC 3114, Loden 46 and Loden 112. The cluster candidate Loden 112
appears to be a very compact group at a true distance modulus of 11.06 +\- 0.11
(s.e.) (1629 +84,-80 pc), significantly closer than previous estimates. We
found other OB stars at that same distance and, based on their proper motions,
suggest a new OB association at coordinates 282 deg < l < 285 deg, -2 deg < b <
2 deg. Utilizing BV photometry and spectral classification of the known O-type
stars in the very young open cluster Wd 2 we provide a new distance estimate of
14.13 +\-0.16 (s.e.) (6698 +512,-475 pc), in excellent agreement with recent
distance determinations to the giant molecular structures in this direction. We
also discuss a possible connection between the HII region RCW 45 and the
highly-reddened B+ star CPD -55 3036 and provide a revised distance for the
luminous blue variable HR Car.Comment: accepted to PAS
Engineering gamma delta T cells limits tonic signaling associated with chimeric antigen receptors
Despite the benefits of chimeric antigen receptor (CAR)–T cell therapies against lymphoid malignancies, responses in solid tumors have been more limited and off-target toxicities have been more marked. Among the possible design limitations of CAR-T cells for cancer are unwanted tonic (antigen-independent) signaling and off-target activation. Efforts to overcome these hurdles have been blunted by a lack of mechanistic understanding. Here, we showed that single-cell analysis with time course mass cytometry provided a rapid means of assessing CAR-T cell activation. We compared signal transduction in expanded T cells to that in T cells transduced to express second-generation CARs and found that cell expansion enhanced the response to stimulation. However, expansion also induced tonic signaling and reduced network plasticity, which were associated with expression of the T cell exhaustion markers PD-1 and TIM-3. Because this was most evident in pathways downstream of CD3ζ, we performed similar analyses on γδT cells that expressed chimeric costimulatory receptors (CCRs) lacking CD3ζ but containing DAP10 stimulatory domains. These CCR-γδT cells did not exhibit tonic signaling but were efficiently activated and mounted cytotoxic responses in the presence of CCR-specific stimuli or cognate leukemic cells. Single-cell signaling analysis enabled detailed characterization of CAR-T and CCR-T cell activation to better understand their functional activities. Furthermore, we demonstrated that CCR-γδT cells may offer the potential to avoid on-target, off-tumor toxicity and allo-reactivity in the context of myeloid malignancies
Limits on the extragalactic background light in the Fermi era
Very high energy (VHE, energy \,GeV) \gamma-rays from
cosmological sources are attenuated due to the interaction with photons of the
extragalactic background light (EBL) in the ultraviolet to infrared wavelength
band. The EBL, thus, leaves an imprint on the observed energy spectra of these
objects. In the last four years, the number of extragalactic VHE sources
discovered with imaging atmospheric Cherenkov telescopes (IACTs), such as
MAGIC, H.E.S.S., and VERITAS, has doubled. Furthermore, the measurements of the
\emph{Fermi} satellite brought new insights into the intrinsic spectra of the
sources at GeV energies. In this paper, upper limits on the EBL intensity are
derived by considering the most extensive VHE source sample ever used in this
context. This is accomplished by constructing a large number of generic EBL
shapes and combining spectral informations from \emph{Fermi} and IACTs together
with minimal assumptions about the source physics at high and very high
\gamma-ray energies. The evolution of the EBL with redshift is accounted for
and the possibility of the formation of an electromagnetic cascade and the
implications on the upper limits are explored. The EBL density at is
constrained over a broad wavelength range between 0.4 and 100\,\mu m. At
optical wavelengths, the EBL density is constrained below
24\,nW\,m\,sr and below 5\,nW\,m\,sr between 8\,\mu
m and 31\,\mu m.Comment: 14 pages, 10 figures; accepted for publication in Astronomy &
Astrophysic
XMM-Newton evidence of shocked ISM in SN 1006: indications of hadronic acceleration
Shock fronts in young supernova remnants are the best candidates for being
sites of cosmic ray acceleration up to a few PeV, though conclusive
experimental evidence is still lacking. Hadron acceleration is expected to
increase the shock compression ratio, providing higher postshock densities, but
X-ray emission from shocked ambient medium has not firmly been detected yet in
remnants where particle acceleration is at work. We exploited the deep
observations of the XMM-Newton Large Program on SN 1006 to verify this
prediction. We performed spatially resolved spectral analysis of a set of
regions covering the southeastern rim of SN 1006. We studied the spatial
distribution of the thermodynamic properties of the ambient medium and
carefully verified the robustness of the result with respect to the analysis
method. We detected the contribution of the shocked ambient medium. We also
found that the postshock density of the interstellar medium significantly
increases in regions where particle acceleration is efficient. Under the
assumption of uniform preshock density, we found that the shock compression
ratio reaches a value of ~6 in regions near the nonthermal limbs. Our results
support the predictions of shock modification theory and indicate that effects
of acceleration of cosmic ray hadrons on the postshock plasma can be observed
in supernova remnants.Comment: Accepted for publication in A&
Dark Matter and Fundamental Physics with the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is a project for a next-generation
observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy,
currently in its design phase, and foreseen to be operative a few years from
now. Several tens of telescopes of 2-3 different sizes, distributed over a
large area, will allow for a sensitivity about a factor 10 better than current
instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few
tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the
following study, we investigate the prospects for CTA to study several science
questions that influence our current knowledge of fundamental physics. Based on
conservative assumptions for the performance of the different CTA telescope
configurations, we employ a Monte Carlo based approach to evaluate the
prospects for detection. First, we discuss CTA prospects for cold dark matter
searches, following different observational strategies: in dwarf satellite
galaxies of the Milky Way, in the region close to the Galactic Centre, and in
clusters of galaxies. The possible search for spatial signatures, facilitated
by the larger field of view of CTA, is also discussed. Next we consider
searches for axion-like particles which, besides being possible candidates for
dark matter may also explain the unexpectedly low absorption by extragalactic
background light of gamma rays from very distant blazars. Simulated
light-curves of flaring sources are also used to determine the sensitivity to
violations of Lorentz Invariance by detection of the possible delay between the
arrival times of photons at different energies. Finally, we mention searches
for other exotic physics with CTA.Comment: (31 pages, Accepted for publication in Astroparticle Physics
- …