109 research outputs found

    Chosen-Ciphertext Secure Dual-Receiver Encryption in the Standard Model Based on Post-Quantum Assumptions

    Get PDF
    Dual-receiver encryption (DRE) is a special form of public key encryption (PKE) that allows a sender to encrypt a message for two recipients. Without further properties, the difference between DRE and PKE is only syntactical. One such important property is soundness, which requires that no ciphertext can be constructed such that the recipients decrypt to different plaintexts. Many applications rely on this property in order to realize more complex protocols or primitives. In addition, many of these applications explicitly avoid the usage of the random oracle, which poses an additional requirement on a DRE construction. We show that all of the IND-CCA2 secure standard model DRE constructions based on post-quantum assumptions fall short of augmenting the constructions with soundness and describe attacks thereon. We then give an overview over all applications of IND-CCA2 secure DRE, group them into generic (i. e., applications using DRE as black-box) and non-generic applications and demonstrate that all generic ones require either soundness or public verifiability. Conclusively, we identify the gap of sound and IND-CCA2 secure DRE constructions based on post-quantum assumptions in the standard Model. In order to fill this gap we provide two IND-CCA2 secure DRE constructions based on the standard post-quantum assumptions, Normal Form Learning With Errors (NLWE) and Learning Parity with Noise (LPN)

    Treatment of pediatric fistula-in-ano—Sphincter-sparing non-cutting seton placement as the future treatment of choice?

    Get PDF
    Background Therapeutic principles of fistula-in-ano (FIA) are lacking evidence-based consensus on treatment options. Non-cutting, sphincter-sparing options have not been published for infancy and childhood FIA. Patients and methods We are presenting retrospective data on FIA treatment with non-cutting seton placement between 2011 and 2020. Data were collected based on medical records and complemented by patients’ contact for follow-up analyses between November 2021 and October 2022. Data were analyzed regarding the outcome variables of recurrent FIA and recurrent perianal abscess. Furthermore, outcomes in different age groups were compared (<1/1.5–12 years of age). Results Treatment duration with non-cutting seton was at a median of 4.6 months and was not associated with recurrent FIA (p = 0.8893). Overall recurrence rate of FIA within an observation time of 9 months postsurgically was at 7% (n = 3/42) and was only seen in infancy, whereas recurrent perianal abscess was mainly observable in children (n = 2, p = 0.2132). Comparison of age groups revealed no significant differences. Of the 42 included patients, 37 responded in the follow-up analysis, resulting in a response rate of 88% with a median follow-up time of 4.9 years. Fecal incontinence was postsurgically only seen in two patients, who were diagnosed prior to surgery and symptoms remained unchanged. Conclusions Non-cutting seton placement might be a promising option in the treatment of FIA in infancy and childhood. Perioperative settings like duration of placed seton and antibiotic treatment have to be discussed in further prospective, enlarged population-based studies

    Sender-binding Key Encapsulation

    Get PDF
    Secure communication is gained by combining encryption with authentication. In real-world applications encryption commonly takes the form of KEM-DEM hybrid encryption, which is combined with ideal authentication. The pivotal question is how weak the employed key encapsulation mechanism (KEM) is allowed to be to still yield universally composable (UC) secure communication when paired with symmetric encryption and ideal authentication. This question has so far been addressed for public-key encryption (PKE) only, showing that encryption does not need to be stronger than sender-binding CPA, which binds the CPA secure ciphertext non-malleably to the sender ID. For hybrid encryption, prior research unanimously reaches for CCA2 secure encryption which is unnecessarily strong. Answering this research question is vital to develop more efficient and feasible protocols for real-world secure communication and thus enable more communication to be conducted securely. In this paper we use ideas from the PKE setting to develop new answers for hybrid encryption. We develop a new and significantly weaker security notion—sender-binding CPA for KEMs—which is still strong enough for secure communication. By using game-based notions as building blocks, we attain secure communication in the form of ideal functionalities with proofs in the UC-framework. Secure communication is reached in both the classic as well as session context by adding authentication and one-time/replayable CCA secure symmetric encryption respectively. We furthermore provide an efficient post-quantum secure LWE-based construction in the standard model giving an indication of the real-world benefit resulting from our new security notion. Overall we manage to make significant progress on discovering the minimal security requirements for hybrid encryption components to facilitate secure communication

    Incorporating phylogenetic uncertainty on phylogeny-based palaeontological dating and the timing of turtle diversification

    Get PDF
    Methods improving the performance of molecular dating of divergence time of clades have improved dramatically in recent years. The calibration of molecular dating using the first appearance of a clade in the fossil record is a crucial step towards inferring the minimal diversification time of various groups and the choice of extinct taxa can strongly influence the molecular dates. Here, we evaluate the uncertainty on the phylogenetic position of extinct taxa through non-parametric bootstrapping. The recognition of phylogenetic uncertainty resulted in the definition of the Bootstrap Uncertainty Range (BUR) for the age of first appearance of a given clade. The BUR is calculated as the interval of geological time in which the diversification of a given clade can be inferred to have occurred, based on the temporal information of the fossil record and the topologies of the bootstrap trees. Divergence times based on BUR analyses were calculated for three clades of turtles: Testudines, Pleurodira and Cryptodira. This resulted in extensive uncertainty ranges of topology-dependent minimal divergence dates for these clades.Fil: Sterli, Juliana. Museo PaleontolĂłgico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Nacional PatagĂłnico; ArgentinaFil: Pol, Diego. Museo PaleontolĂłgico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Nacional PatagĂłnico; ArgentinaFil: Laurin, M.. Museum National d Histoire Naturelle. Batiment de Geologie; Franci

    Impedance-Matching Hearing in Paleozoic Reptiles: Evidence of Advanced Sensory Perception at an Early Stage of Amniote Evolution

    Get PDF
    BACKGROUND: Insights into the onset of evolutionary novelties are key to the understanding of amniote origins and diversification. The possession of an impedance-matching tympanic middle ear is characteristic of all terrestrial vertebrates with a sophisticated hearing sense and an adaptively important feature of many modern terrestrial vertebrates. Whereas tympanic ears seem to have evolved multiple times within tetrapods, especially among crown-group members such as frogs, mammals, squamates, turtles, crocodiles, and birds, the presence of true tympanic ears has never been recorded in a Paleozoic amniote, suggesting they evolved fairly recently in amniote history. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we performed a morphological examination and a phylogenetic analysis of poorly known parareptiles from the Middle Permian of the Mezen River Basin in Russia. We recovered a well-supported clade that is characterized by a unique cheek morphology indicative of a tympanum stretching across large parts of the temporal region to an extent not seen in other amniotes, fossil or extant, and a braincase specialized in showing modifications clearly related to an increase in auditory function, unlike the braincase of any other Paleozoic tetrapod. In addition, we estimated the ratio of the tympanum area relative to the stapedial footplate for the basalmost taxon of the clade, which, at 23:1, is in close correspondence to that of modern amniotes capable of efficient impedance-matching hearing. CONCLUSIONS/SIGNIFICANCE: Using modern amniotes as analogues, the possession of an impedance-matching middle ear in these parareptiles suggests unique ecological adaptations potentially related to living in dim-light environments. More importantly, our results demonstrate that already at an early stage of amniote diversification, and prior to the Permo-Triassic extinction event, the complexity of terrestrial vertebrate ecosystems had reached a level that proved advanced sensory perception to be of notable adaptive significance

    p62 Is Required for Stem Cell/Progenitor Retention through Inhibition of IKK/NF-kB/Ccl4 Signaling at the Bone Marrow Macrophage-Osteoblast Niche

    Get PDF
    In the bone marrow (BM), hematopoietic progenitors (HPs) reside in specific anatomical niches near osteoblasts (Obs), macrophages (MFs), and other cells forming the BM microenvironment. A connection between immunosurveillance and traffic of HP has been demonstrated, but the regulatory signals that instruct the immune regulation of HP circulation are unknown. We discovered that the BM microenvironment deficiency of p62, an autophagy regulator and signal organizer, results in loss of autophagic repression of macrophage contact-dependent activation of Ob NF-kB signaling. Consequently, Ob p62-deficient mice lose bone, Ob Ccl4 expression, and HP chemotaxis toward Cxcl12, resulting in egress of short-term hematopoietic stem cells and myeloid progenitors. Finally, Ccl4 expression and myeloid progenitor egress are reversed by deficiency of the p62 PB1- binding partner Nbr1. A functional ‘‘MF-Ob niche’’ is required for myeloid progenitor/short-term stem cell retention, in which Ob p62 is required to maintain NF-kB signaling repression, osteogenesis, and BM progenitor retention

    Integrative Network Biology: Graph Prototyping for Co-Expression Cancer Networks

    Get PDF
    Network-based analysis has been proven useful in biologically-oriented areas, e.g., to explore the dynamics and complexity of biological networks. Investigating a set of networks allows deriving general knowledge about the underlying topological and functional properties. The integrative analysis of networks typically combines networks from different studies that investigate the same or similar research questions. In order to perform an integrative analysis it is often necessary to compare the properties of matching edges across the data set. This identification of common edges is often burdensome and computational intensive. Here, we present an approach that is different from inferring a new network based on common features. Instead, we select one network as a graph prototype, which then represents a set of comparable network objects, as it has the least average distance to all other networks in the same set. We demonstrate the usefulness of the graph prototyping approach on a set of prostate cancer networks and a set of corresponding benign networks. We further show that the distances within the cancer group and the benign group are statistically different depending on the utilized distance measure

    In search of morphological modules: a systematic review

    Get PDF
    Morphological modularity arises in complex living beings due to a semi-independent inheritance, development, and function of body parts. Modularity helps us to understand the evolvability and plasticity of organismal form, and how morphological variation is structured during evolution and development. For this reason, delimiting morphological modules and establishing the factors involved in their origins is a lively field of inquiry in biology today. Although it is thought that modularity is pervasive in all living beings, actually we do not know how often modularity is present in different morphological systems. We also do not know whether some methodological approaches tend to reveal modular patterns more easily than others, or whether some factors are more related to the formation of modules or the integration of the whole phenotype. This systematic review seeks to answer these type of questions through an examination of research investigating morphological modularity from 1958 to present. More than 200 original research articles were gathered in order to reach a quantitative appraisal on what is studied, how it is studied, and how the results are explained. The results reveal an heterogeneous picture, where some taxa, systems, and approaches are over-studied, while others receive minor attention. Thus, this review points out various trends and gaps in the study of morphological modularity, offering a broad picture of current knowledge and where we can direct future research efforts

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust
    • 

    corecore