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SUMMARY

In the bone marrow (BM), hematopoietic progenitors
(HPs) reside in specific anatomical niches near oste-
oblasts (Obs), macrophages (MFs), and other cells
forming the BMmicroenvironment. A connection be-
tween immunosurveillance and traffic of HP has
been demonstrated, but the regulatory signals that
instruct the immune regulation of HP circulation are
unknown. We discovered that the BM microenviron-
ment deficiency of p62, an autophagy regulator and
signal organizer, results in loss of autophagic repres-
sion of macrophage contact-dependent activation of
Ob NF-kB signaling. Consequently, Ob p62-deficient
mice lose bone, Ob Ccl4 expression, and HP chemo-
taxis toward Cxcl12, resulting in egress of short-term
hematopoietic stem cells and myeloid progenitors.
Finally, Ccl4 expression and myeloid progenitor
egress are reversed by deficiency of the p62 PB1-
binding partner Nbr1. A functional ‘‘MF-Ob niche’’
is required for myeloid progenitor/short-term stem
cell retention, in which Ob p62 is required to maintain
NF-kB signaling repression, osteogenesis, and BM
progenitor retention.

INTRODUCTION

Steady-state blood formation during most adulthood depends

on long-lived hematopoietic progenitors (HPs) (Sun et al.,
2084 Cell Reports 9, 2084–2097, December 24, 2014 ª2014 The Aut
2014). Constitutive egress of bone marrow (BM)-resident HP

into the blood is a well-established phenomenon. Circulating

HP can survey peripheral organs and foster the local production

of tissue-resident innate immune cells under both steady-state

conditions and in response to inflammatory signals (Baldridge

et al., 2010; Essers et al., 2009; Massberg et al., 2007). Dysregu-

lation of stromal components of the HP niches within the BM,

such as changes in the levels of chemokines from osteoblasts

(Obs) and other mesenchymal cells, has been associated with

HP egress (Ding and Morrison, 2013; Greenbaum et al., 2013;

Méndez-Ferrer et al., 2010; Omatsu et al., 2010; Petit et al.,

2002; Sugiyama et al., 2006; Visnjic et al., 2004). Specifically,

the deletion of the major hematopoietic stem cell and progenitor

(HSC/P) traffic regulator Cxcl12 (Peled et al., 1999, 2000) from

Cxcl12-abundant reticular cells and Ob results in constitutive

HP mobilization and a loss of B-lymphoid progenitors, whereas

their HSC function is normal (Greenbaum et al., 2013). Physio-

logical regulation of thesemesenchymal componentsmodulates

HP trafficking and is afforded by several mechanisms, including

signals derived from BM-resident macrophages (MFs) (Casa-

nova-Acebes et al., 2013; Chow et al., 2011; Christopher et al.,

2011; Winkler et al., 2010). Cellular crosstalk between MFs

and Obs in the HP niche may critically regulate the response of

HP to cytokines and chemokines.

The transcription factor NF-kB has a key role in inflammation

and immune responses (Ghosh and Karin, 2002; Silverman and

Maniatis, 2001; Sun et al., 2013) and has been recently shown

to play a role in the response of myeloid progenitors to stress he-

matopoiesis (Zhao et al., 2014). NF-kB can also control mesen-

chymal-derived osteogenesis, andmice with a loss of function of

NF-kB signaling show osteopetrosis (Iotsova et al., 1997). IkB
hors
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kinase (IKK)-dependent NF-kB activation is essential for the

bone-remodeling function of osteoclasts (Ruocco et al., 2005),

and the restoration of NF-kB in IKK-deficient mice prevents Ob

differentiation (Chang et al., 2009). However, the mechanisms

and regulatory pathways that control NF-kB activation in the

BM Ob niche and the putative effect of NF-kB signaling on HP

activity in the BM remain unknown.

p62 (also called Sqstm-1) is amaster regulator of ubiquitinated

protein turnover via autophagy and the ubiquitin-proteasome

system (Moscat and Diaz-Meco, 2009). p62 also has a central

role in osteoclastogenesis. It controls the receptor activator of

NF-kB signaling by interacting with TRAF6 and activating NF-

kB through atypical-protein-kinase-C-mediated activation of

IKK in osteoclasts (Duran et al., 2008; Durán et al., 2004). The

loss of p62 signaling is implicated in osteolytic lesions in multiple

myeloma and adipogenesis (Hiruma et al., 2009; Rodriguez et al.,

2006), whereas gain-of-functionmutations of p62 are associated

with aberrant and excessive bone turnover in Paget disease (Ro-

driguez et al., 2006). p62 has also been implicated in the selec-

tive autophagy of components of the NF-kB-signaling pathway

(Chang et al., 2013); however, the specific cellular and molecular

roles of p62 in Ob, and its role in the Ob control of HP activity,

have not yet been elucidated. In this manuscript, we reveal

that upstream BM-MF signaling and cell-to-cell interaction are

required for Ob differentiation and the expression of the chemo-

kine Ccl4 (MF inflammatory protein-1b). Whereas the cell-auton-

omous deficiency of p62 does not translate into significant HP

activity defects, the deficiency of p62 in the nonhematopoietic

compartment of BM results in osteopenia due to defective Ob

differentiation and HP egress. Mechanistically, the p62 within

Obs attenuates NF-kB signaling through the downregulation of

phospho-focal adhesion kinase (p-FAK), NF-kB, and p-IkBa,

thus impairing NF-kB activation, MF-dependent Ob differentia-

tion, and Ccl4 production.

RESULTS

Deficiency of p62 Induces Non-Cell-Autonomous HP
Egress In Vivo
p62�/� mice exhibit egress of myeloid HP (Figure 1A) and short-

term (ST) repopulating stem cells (Figures 1B and 1C) to the pe-

ripheral blood (PB), but not long- or medium-term repopulating

HSCs (Figures S1A–S1C), common lymphoid progenitors (Fig-

ure S1D), or B cell lineage populations (Figure S1E). This egress

of myeloid progenitors was also observed in the spleen (Fig-

ure 1D). However, p62 deficiency was not associated with

expansion of the BM content of cells (data not shown); repopu-

lating HSC (Figures S1F–S1H), myeloid, or common lymphoid

progenitors or B cell lineage populations (Figures S1I–S1K); or

changes in the hematopoietic regenerative response to 5-fluoro-

uracil administration (Figures S1L and S1M).

To determine whether the myeloid progenitor egress is

hematopoietic intrinsic or if it depends on the hematopoietic

microenvironment (HM), we generated full chimeric animals of

wild-type hematopoiesis and p62-deficient hematopoiesis

(H-p62�/�) by BM transplantation into CD45.1+ animals (Fig-

ure S2A) or through reverse transplantation of WT HSC into

lethally irradiated CD45.2+ WT (WT HM) or p62�/� animals
Cell Re
(p62�/� HM; Figure 1E). We observed that the effect of p62 on

HP traffic is non-cell-autonomous, because H-p62�/� HP did

not recapitulate the increased egress of HP (Figure S2B).

Conversely, mice lacking p62 in the HM (p62�/� HM) did pheno-

copy the HP egress of primary mice (Figure 1F), and increased

HP egress of p62�/� HMmice was rescued by secondary trans-

plantation into WT recipients (Figures 1G and 1H). All together,

these data indicate that the effect of p62 deficiency onHP egress

is non-cell-autonomous.

It has been reported that overexpression of AAAGUGC seed-

containing microRNA promotes cell expansion, replating capac-

ity, and signaling in hematopoietic cells by interfering with p62-

regulated pathways in myeloid cell lines and that these changes

may reflect the effect of p62 deficiency on HSC andmyeloid pro-

genitor mobilization (Meenhuis et al., 2011). To identify whether

p62 regulates in vivo hematopoietic cell proliferation, we

analyzed the cell cycle status of primary WT and p62-deficient

as well as WT hematopoietic cells engrafted in full chimeric WT

HM and p62�/� HM mice. We found no significant differences

in the cell cycle status of BM long-term-HSC (Figure S2C), ST-

HSC (Figure S2D), and Lin�/c-kit+/Sca-1� (LK) (Figure S2E) cells

from primarymice or inWTHMor p62�/�HMmice (Figures S2F–

S2H). Our data using models of primary loss of function of p62

did not support the existence of a cell-autonomous or microen-

vironment-dependent role of p62 in HSC/P cell cycle regulation.

To determine whether a defect in the homing of circulating HP

is responsible for HP egress in p62-deficient HM, we measured

the ability of WT HSC and HP to home into nonmyeloablated WT

HM or p62�/�HM. As compared toWT HM recipients, there was

a 50%–60% reduction in the homing of immunophenotypically

defined BM HSC (Lin�/c-kit+/Sca-1+/CD34�/CD135� cells) to

p62�/��HM-recipient mice (Figure 1I) and the progenitor-con-

taining population of Lin�/c-kit+/Sca-1+ (LSK) BM cells (Fig-

ure 1J), as well as LK BM cells (Figure 1K). This homing defect

suggested a significant impairment in the ability of the p62�/�

HM to lodge HSC/P upon transplantation into an unmanipulated

host. Nevertheless, this difference in HSC/P homing ability dis-

appeared when the recipient mice were myeloablated following

lethal irradiation (Figures S2I–S2K), suggesting the existence of

an accessory contribution from a radiosensitive cell population

that can be regenerated by WT HSC/P transplantation.

Ob Deficiency of p62 Is Responsible for Osteogenic
Defects and HP Egress
The mammalian BM microenvironment consists of multiple cell

types, including mesenchymal progenitors, CXCL12-expressing

adventitial reticular cells, Ob lineage cells, endothelial cells, peri-

cytes, fibroblasts, and adipocytes, among others. Functional

studies support a role for Ob-lineage cells to maintain HP in

the BM in vivo. Long-term HSC are connected to Obs (Zhang

et al., 2003). Obs in the BM contribute to HP expansion through

activation of Notch signaling (Calvi et al., 2003), and targeted

ablation of Obs in vivo results in a loss of HP from the BM

(Visnjic et al., 2004). To understand whether osteogenesis was

impaired in p62�/� HM mice and to delineate the role of p62

in the nonhematopoietic HP niche, we examined the bone

architecture of p62�/� HM chimeric mice. Bone histomorpho-

metric analysis using microcomputed tomography (micro-CT)
ports 9, 2084–2097, December 24, 2014 ª2014 The Authors 2085
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Figure 1. p62 Regulates HP Trafficking in a Non-Cell-Autonomous Manner

(A) CFU-C content in the PB (PB) of WT or p62�/� mice (n = 8–10 mice per group). Values represent average of three independent experiments.

(B) Experimental set up. PBmononuclear cells (PBMC) from CD45.2+WT or p62�/�mice were mixed with CD45.1+ B6.SJLPtprca Pep3b/BoyJ WT bone marrow (BM)

cells and competitively transplanted into lethally irradiated CD45.1+ B6.SJLPtprca Pep3b/BoyJ mice.

(C) CD45.2+ chimera in the PB of recipient mice (n = 5–8 mice per group) after 6 weeks of competitive transplantation.

(D) Frequency of hematopoietic progenitors in the spleens of WT or p62�/� mice (n = 3 mice per group).

(E) Experimental setup. BM cells from CD45.1+ B6.SJLPtprca Pep3b/BoyJ mice were noncompetitively transplanted into lethally irradiated CD45.2+ WT or p62�/�

mice to generate chimeric WT HM or p62�/� HM mice.

(F) Absolute numbers of CFU-C present in the PB of WT HM or p62�/� HM mice (n = 4–7 mice per group).

(G) Experimental setup. BM cells from CD45.1+ B6.SJLPtprca Pep3b/BoyJ mice were noncompetitively transplanted into lethally irradiated CD45.2+ WT or p62�/�

mice to generate chimeric WT HM or p62�/� HM mice. BM cells isolated from primary WT HM or p62�/� HM mice were transplanted into lethally irradiated

CD45.2+ to generate secondary WT recipients.

(H) Absolute numbers of CFU-C present in the PB of secondary WT-recipient mice (n = 4–6 mice per group). p = not significant.

(I–K) Homing (%) of WT ST-HSC (I), LSK (J), and LK (K) BM cells to nonmyeloablated BM from WT or p62�/� mice. A minimum of five mice were analyzed per

group. For all panels, values represent mean ± SEM. *p < 0.05.
(Figure 2A) revealed significantly decreased femoral trabecular

bone volume (Figure 2B) and trabecular number (Figure 2C) in

p62�/� HM mice as compared to WT HM mice. In p62-deficient

femoral sections, histological analysis of endosteal ColIa1-ex-

pressing Ob demonstrated a flatter appearance (Figures 2D

and 2E) and a decreased number of cortical osteocytes (Fig-

ure 2F). However, the frequency (and content) of mesenchymal

progenitors (colony-forming unit fibroblasts [CFU-F]; Figure 2G)

and osteoprogenitors (CFU-Ob; Figure 2H) did not change, sug-

gesting that p62 controls Ob maturation and terminal differenti-

ation, but not mesenchymal progenitor differentiation. Finally,

to confirm whether the presence of p62 in Obs is responsible

for HP mobilization, we enumerated the number of circulating

HP in mice with a specific deletion of p62 in their Obs. We
2086 Cell Reports 9, 2084–2097, December 24, 2014 ª2014 The Aut
crossed Cola1(I)-Cre mice with p62f/f mice to obtain Ob-specific

Cola1(I)-Cre;WT and Cola1(I)-Cre;p62f/f mice. Interestingly,

Cola1(I)-Cre;p62f/f mice phenocopied increased HP egress as

observed in p62�/� and p62�/� HM mice (Figures 2I and 2J),

suggesting that the loss of p62 in Obs is responsible for non-

cell-autonomous HP egress in vivo.

p62 Regulates NF-kB-Dependent Ob Differentiation in
Presence of MFs
The homing defect that is associated with a deficiency of p62 in

nonconditioned HM (Figures 1H and S2I-S2K) is not found in

mice with irradiated HM; this may suggest that radiosensitive he-

matopoietic cells are required as effectors to retain HP in the BM.

Myeloid mononuclear accessory cells, in addition to Obs, have
hors
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Figure 2. Ob p62 Deficiency Impairs Ob Differentiation and Osteogenesis In Vivo, Resulting in HP Egress

(A) Representative microcomputer tomography (micro-CT) analyses of femoral trabecular bone of WT HM or p62�/� HMmice after 16 weeks of transplantation.

(B and C) Percent ratio of trabecular bone volume versus tissue volume (BV/TV) and trabecular number (Tb.N) of WT HM or p62�/�HMmice (4–7 mice per group)

at 16 weeks after transplantation.

(D) Representative confocal microscopic images of collagen type1a1 (red) and nuclear counterstaining (DAPI, blue) in femur sections fromWTHMor p62�/�HM.

(E) Measurement of Ob length projections of bone lining Obs in longitudinal femoral sections from WT HM (Obs n = 24) or p62�/� HM (Obs n > 17 per group).

Analysis was performed as measurement of the transversal diameter at the widest point of the Obs expressing Col1a1 (space between arrow ends).

(F) Counts of osteocytes in femoral cortical bone from WT HM (n = 47 fields) or p62�/� HM (n = 42 fields).

(G and H) CFU-F and CFU-Ob from BMNCs of chimeric WT HM or HM p62�/� mice.

(I) ColIa1-Cre;p62 p62f/f mice phenocopy the hematopoietic egress of primary p62�/� mice and p62�/� HM mice. *p < 0.05.

(J) Osteocyte counts in femoral cortical bone from Coll1a1-Cre; WT or Coll1a1-Cre; p62f/f. n = 33 fields were analyzed for each group. For all panels, values

represent mean ± SEM. ***p < 0.001.
been proposed to form a myeloid-signaling network responsible

for HP homing and engraftment in the BM (Katsumoto et al.,

2005). Specifically, MFs have been known to mediate HP reten-

tion in the BM (Casanova-Acebes et al., 2013; Chow et al., 2011).

It has been shown that depletion of BM MFs, but not other line-

age-related cells such as osteoclasts (Miyamoto et al., 2011), is

adequate to suppress endosteal Obs, inhibit the expression of

HP-supportive cytokines at the endosteum, and elicit HP mobi-

lization into the PB (Winkler et al., 2010). The content of MFs in

contact with Obs in the trabecular and endosteal lining of BM

from WT HM and p62�/� HM mice was similar (Figures S3A

and S3B). Similar to untreated mice with global deficiency of

p62 (Durán et al., 2004), the loss of p62 in Obs did not modify

significantly the bone osteoclast content (Figures S3C and

S3D). Together, these data suggested that the content of osteo-

genic MFs or osteoclasts was not causative of the loss of BM

retention observed in HM- or Ob-p62-deficient mice.

To identify whetherMFs are required for p62-mediatedOb ac-

tivity,we isolatedandexpandedF4/80+/CD68+/CD115+/CD169�
Cell Re
MFs derived from the BM of ubiquitin C-enhanced GFP (EGFP)

mice (Figure S3E) and cocultured with Obs in vitro at a 1:1 ratio

for 24 hr in the absence of MFs or osteogenic differentiation fac-

tors and thenanalyzed their biochemical andexpressioneffect on

downstream signaling. Notably, the expression levels of Ob dif-

ferentiation genes are significantly reduced in p62�/� Obs that

have been cocultured with WT MFs (Figure 3A), implying that

MFs induce specific signaling that interfere with Ob differentia-

tion. Ob focal adhesion kinase (FAK) phosphorylation and activa-

tion has been shown to depend onMF b2-integrin binding, which

regulates Ob differentiation (Kim et al., 2007). Using phospho-

flow cytometry analysis, we found that MFs are capable of

activating FAK in WT or p62�/� Obs (Figure S3F). The absence

of p62 expression in Obs resulted in a modest reduction of

MF-dependent Ob FAK activation, suggesting that themoderate

decrease in FAK activation in p62�/�Obsmay not be responsible

for the dramatic loss of p62�/� Ob differentiation.

Mitogen-activated protein kinase (MAPK) and NF-kB tran-

scriptional signatures have been associated with p62 activity.
ports 9, 2084–2097, December 24, 2014 ª2014 The Authors 2087
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Figure 3. MFs Are in Close Proximity to Endosteal Obs In Vivo, and p62 Regulates NF-kB-Dependent Ob Differentiation through

MF-Mediated FAK Signaling

(A) Relative gene expressions of Alpl, Runx2, Bglap, and Gpnmb in WT (gray bars) or p62-deficient (black bars) Obs after 24 hr of culture with WT MFs.

(B) Representative images of femoral bones from chimeric WT HM (n = 4) or p62�/� BM (n = 3) stained with anti-NF-kB p65 (green) and nuclear counterstaining

(DAPI, blue).

(C) Percent of Obs with predominant nuclear localization of NF-kB p65 from confocal microscopy images of a minimum of 25 Obs per group.

(D) DNA-bound NF-kB p65 was measured in isolated nuclear fractions.

(E) Representative immunoblots of phosphorylated IkBa and IkBa expression.

(F and G) NF-kB signaling activation of sortedWT or p62-deficient Obs after culture or with EGFP+WTMFs for 24 hr. (F) DNA-bound NF-kB p65 wasmeasured in

isolated nuclear fractions. (G) Representative immunoblots of phosphorylated IkBa and IkBa expression. b-actin was used as a loading control for (E) and (G).

(H–J) Relative gene expressions of Alpl (H), Runx2 (I), and Bglap (J) inWT or p62-deficient sortedOb after 24 hr of coculturewith EGFP+WTMFs in the presence of

1 mM BAY 11-7085 (hatched bars) or vehicle control (DMSO, solid bars).

(K) Migration of HP toward Obs and WT MFs supplemented with 100 ng/ml Cxcl12 and either vehicle control or BAY 11-7085. For all panels, values represent

mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.005.
Extracellular signaling-regulated kinase (Erk) or p38 activation

has been shown to be required for Ob differentiation. The Erk

or p38 pathway mediates the signal transduction from hormone

and growth factors, such as fibroblast growth factor-2 (Xiao

et al., 2002) and parathyroid hormone (Chen et al., 2004). They

also stimulate Runx-2 phosphorylation and its transcriptional ac-

tivity (Franceschi et al., 2009; Xiao et al., 2000). In addition, Erk or

p38 signaling is required for p62 activity in other mesenchymal

lineage BM cells such as adipocytes. It was reported that the

absenceof Erk1wassufficient to restore abrogatedadipogenesis

and energy homeostasis of p62-deficient animals in vivo (Lee

et al., 2010). However, whereas MF signaling is associated with

increasedactivationof Erk, but notp38, in fluorescence-activated
2088 Cell Reports 9, 2084–2097, December 24, 2014 ª2014 The Aut
cell sorting (FACS)-sortedObs (Figure S3G), thedeficiency of p62

resulted in inhibition (Figure S3G) rather than further upregulation

as was reported in adipocytes (Lee et al., 2010; Rodriguez et al.,

2006). Furthermore, HP egress was not rescued by deletion of

Erk1 (Figure S3H), strongly suggesting that Erk upregulation is

not responsible for HP mobilization in p62-deficient Obs.

NF-kB signaling has also been shown to be crucial in Ob differ-

entiation. Mice with disrupted NF-kB signaling show severe

osteopetrosis (Iotsova et al., 1997). IKK-dependent NF-kB acti-

vation is essential for the bone remodeling function of osteo-

clasts (Ruocco et al., 2005), and gain of function of NF-kBactivity

prevents Ob differentiation, as demonstrated in mice deficient

in IKK (Chang et al., 2009). Because osteoclasts may be
hors



dispensable for HP mobilization in vivo (Miyamoto et al., 2011),

we analyzed whether NF-kB-dependent signaling in Obs corre-

lates with HP egress. Histological analysis of active NF-kB p65

in endosteal and trabecular Obs showed increased NF-kB nu-

clear localization in p62�/� Obs in vivo (Figures 3B and 3C).

Similar to previous reports in osteoclasts and tumor cells (Duran

et al., 2008; Durán et al., 2004), Obs cultured from p62-deficient

animals showed decreased levels of the p65 subunit of NF-kB

bound to DNA (Figure 3D), and IkBa, the phosphorylated inhibi-

tor of NF-kB (p-IkBa; Figure 3E), was responsible for degrada-

tion. However, cocultures of MFs with Obs resulted in increased

NF-kB p65 activity, as demonstrated by translocation of NF-kB

to the nucleus (Figure 3F). In addition, p62�/� Obs isolated after

coculture with MFs showed increased phosphorylation and

expression of IkBa (Figure 3G).

Altogether, these data demonstrate that MFs reverse p62-

dependent NF-kB signaling in Obs. To ascertain whether

NF-kB is crucial for p62-dependent Ob differentiation, we evalu-

ated the changes of bone-specific gene expression after in vitro

treatment with BAY 11-7085, an NF-kB inhibitor. The attenuation

of NF-kB activity was validated by the reduced concentration of

DNA-bound-NF-kB p65 seen in both Obs and MFs (Figures S3I

and S3J). Interestingly, addition of BAY 11-7085 to Ob-MF

cocultures derepressed Alpl, Runx2, and Bglap expression in

WT and p62�/�-sorted Obs (Figures 3H–3J), suggesting that

p62 deficiency enhances the ability of IKK/NF-kB activity to

inhibit Ob differentiation. Finally, Cxcl12-driven chemotaxis in

the presence of WT MF-p62-deficient Ob cocultures was signif-

icantly reduced (Figure 3K), indicating that Ob p62 deficiency

results in a loss of sensitivity to Cxcl12 chemotaxis gradients.

The inhibition of NF-kB in WT MF-WT Ob cocultures results in

an �2-fold increase in chemotaxis of WT HP and eliminates

the effect of p62 deficiency in Obs, suggesting that NF-kB activ-

ity is responsible for the effect of Ob p62 on directed migration

toward Cxcl12 gradients (Figure 3K).

HM p62 Deficiency Impairs MF-Dependent Ob
Expression of the Chemokine Ccl4 and Recapitulates
Part of the Mobilization Phenotype Associated with BM
MF Activity
In order to determine whether the osteogenic deficiency of p62 in

p62�/�HMmice could result in the alteration of the levels of che-

mokines responsible for HP egress, we performed an in vivo

expression screen of a panel of chemokines or cytokines known

to be relevant in HP traffic (Figures S4A–S4N). We hypothesized

that their expression and secretion in plasma and/or femoral

extracellular fluid may depend on Ob activity, which could be

regulated by NF-kB activity.

Interestingly, Ccl4 was uniquely found to be downregulated in

the femoral extracellular fluid of p62-deficient mice (Figure 4A)

and trended to be decreased in plasma as well (Figure S4A).

Ccl4 is a C-C motif chemokine that modulates BM HP chemo-

tactic response to Cxcl12 (Basu and Broxmeyer, 2009). Cxcl12

levels in the plasma and bones of p62�/� HM mice were normal

or upregulated (Figures S5A and S5B), which was consistent

with a null or minimal contribution of mature Obs to systemic

or local Cxc12 levels, as previously reported (Ding andMorrison,

2013; Greenbaum et al., 2013). As expected, Obs from WT mice
Cell Re
did not show any significant expression or secretion of Ccl4;

neither did the deficiency of p62 modify its expression or secre-

tion (Figures 4B–4D). Interestingly, the expression and secretion

of WT Ob Ccl4 protein was significantly increased upon cocul-

ture with MFs, whereas the deficiency of p62 in Obs resulted

in diminished levels of Ccl4 expression and secretion, similar

to the levels of unstimulated Obs (Figures 4E–4G, cf. Figures

4B–4D).

Administration of clodronate liposomes has been shown to

deplete MFs and induce HP mobilization (Winkler et al., 2010).

We compared the effect of MF depletion by clodronate with

the deficiency of Ob p62, in terms of their effect on HP mobiliza-

tion. We found that clodronate did result in a depletion of

CD11b+/F4/80+/CD68+/CD115 (c-fms)+ MFs in vivo and did

not affect other CD11b+/F4/80+ BM cell populations (Figure

S5C). Exhaustion of CD11b+/F4/80+/CD68+/CD115+ induced

an �4-fold increase in the number of circulating HP whereas

Ob p62 deficiency resulted in only an �2-fold increase (Fig-

ure S5D). Interestingly, the effect of HM p62 deficiency on HP

mobilization was lost in CD11b+/F4/80+/CD68+/CD115+-

depleted animals (Figure S5D). These results indicate that

CD11b+/F4/80+/CD68+/CD115+ MFs signal through Ob p62

and that Ob p62 is, at least partly, responsible for the effect of

CD11b+/F4/80+/CD68+/CD115+ cell depletion on myeloid pro-

genitor retention in the BM.

We confirmed that direct cell-to-cell interaction between Obs

and MFs was necessary to modulate Ccl4 production, because

culture of Obs and MFs in different chambers of a noncontact

transwell culture system failed to reproduce the difference in

expression of Ccl4 (Figure 4H). Moreover, addition of an anti-

Ccl4 antibody to cocultures of p62-deficient Obs and WT MFs

restored the ability of WT HP to respond to Cxcl12-driven

chemotaxis (Figure 4I). Collectively, our data indicate that p62

prevents activation of IKK and NF-kB in Obs and that p62 is

required for osteogenesis, Ob differentiation, expression of the

chemokine Ccl4, Cxcl12-directed chemotaxis, and HP retention

within the BM microenvironment.

p62 Signaling Attenuates IKK/NF-kB Activity through Its
Autophagic Activity, Facilitating Ob Differentiation and
Ccl4 Expression
To mechanistically ascertain the role of p62 in Ob differentiation

and Ob Ccl4 expression, p62�/� Obs were transduced with a

retroviral EGFP-expressing bicistronic vector expressing full-

length p62 or an empty vector (mock; Figure S6A). Transduced

cells were cocultured (or not) with WT (unlabeled or ubiquitin

C-EGFP transgenic) MFs for 24 hr. This experimental setting

was used to determine the effect of the restoration of p62

expression on NF-kB activity and signaling pathway. As a posi-

tive control of optimal NF-kB translocation, we used stimulation

with tumor necrosis factor alpha on Obs (Figure S6B). We

confirmed that MF signaling was necessary for p62-dependent

NF-kB nuclear translocation, because exogenous expression

of p62 did rescue and abrogate the nuclear localization of active

NF-kB p65 in p62-deficient Obs in the presence of MFs (Fig-

ure 5A), but not in their absence (Figure S6B). Reintroduction

of p62 decreased the cellular levels of NF-kB p65 protein (Fig-

ure 5B) due to both lysosomal degradation and a loss of nuclear
ports 9, 2084–2097, December 24, 2014 ª2014 The Authors 2089
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Figure 4. p62 Regulates Ccl4-Dependent HP Retention

(A) BM extracellular levels of Ccl4. Extracellular fluid from WT HM or p62�/� HM femora (at 16 weeks after transplantation) were processed for ELISA.

(B–D) In vitro analysis of Ccl4 in explanted Obs from WT and p62�/� mice cultured for 24 hr. (B) Representative confocal microscopic images of Ccl4 (red) and

nuclear counterstaining (DAPI, blue) in WT or p62�/� Obs. Data are representative of two independent experiments with similar results. (C) Mean fluorescent

intensity (MFI) of Ccl4 expression measured in (B). (D) Concentration of Ccl4 secreted from 105 Obs after 24 hr culture without contact with WT MFs. Values are

derived from two independent experiments. a.u., arbitrary units.

(E–G) In vitro analysis of Ccl4 in explanted Obs from WT and p62�/� mice cultured for 24 hr with EGFP+ WT MFs at a 1:1 ratio. (E) Representative confocal

microscopic images of Ccl4 (red) and nuclear counterstaining (DAPI, blue). Data are representative of three independent experiments with similar results. (F) MFI

of Ccl4 expression measured in (E). A minimum of 25 Obs were measured. (G) Concentration of Ccl4 secreted from 105 Obs after 24 hr culture in contact with

EGFP-expressing WT MFs. Values are derived from three independent experiments.

(H) Effect of MF-Ob contact on Ccl4 production. Ccl4 production was not upregulated in Obs (lower chamber) from WT and p62-deficient animals cultured in

noncontact (transwell) systems after 24 hr of culture with MFs (upper chamber).

(I) Chemotaxis of HP toward Obs and of WT MFs toward a Cxcl12 gradient, in the presence or absence of an anti-Ccl4 antibody. IgG, immunoglobulin G.

For all panels, values represent mean ± SEM. *p < 0.05. ***p < 0.001.
translocation, as assessed by colocalization in lysosomes and

diminished nuclear translocation (Figures 5A and 5C). Inhibition

of NF-kB p65 activation by p62 was secondary to restored cat-

alytic activity of IKK activity, given that the absolute cytosolic

levels of p-IkBa were found to inversely correlate with the

expression of p62 (Figure 5D). These changes were not associ-

ated with changes in the expression levels of the IKK catalytic

subunits a, b, or g (Figure S6C), indicating that p62 controls

IKK activity, but not its expression.

Similarly, exogenous expression of p62 in p62�/� Obs in the

presence of MFs rescued the expression of Ob Runx2 (Fig-

ure 5E), confirming that p62 expression is associatedwith Ob dif-

ferentiation. Overexpression of p62 also rescued the expression

and production of Ccl4 by Obs (Figures 6A–6C), indicating that

the concentration of Ccl4 is directly related to p62 expression

and that it is inversely related to the activity of NF-kB in Obs

cultured with MFs.

Protein degradation by p62-dependent autophagy mecha-

nisms may be determined by the oligomerization-dependent
2090 Cell Reports 9, 2084–2097, December 24, 2014 ª2014 The Aut
autophagosome localization (Komatsu et al., 2007; Itakura

and Mizushima, 2011). To identify the functional domain in

p62 responsible for Ccl4 production, p62�/� Obs were trans-

duced with a retroviral vector expressing the p62 D69-73

mutant, which fails to oligomerize, a process required for auto-

phagosome formation (Duran et al., 2008, 2011; Moscat et al.,

2006). The chemoattraction of HP toward Cxcl12, which was

added to cultures of WT MFs and WT Obs, was significantly in-

hibited by the autophagy inhibitor bafilomycin A1 to the same

level seen in cultures of WT MFs and p62�/� Obs (Figure 6D;

compare with Figure 3K). This suggests that the effect of p62

deficiency is equivalent to that induced by bafilomycin A1

through autophagic inhibition. Ectopic expression of the p62

D69-73 mutant (Figure S6D), which disrupts the p62 oligomer-

ization required for autophagosome formation, failed to rescue

Ccl4 expression or production (Figures 6A–6C), suggesting that

p62-dependent Ccl4 expression depends on oligomerization,

which is required for localization to the autophagosome forma-

tion site.
hors
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Figure 5. Ectopic Expression of p62 Abrogates Nuclear Translocation of NF-kB p65 and Rescues Differentiation and Ccl4 Expression of p62-

Deficient Obs

(A) Representative confocal microscopy images of NF-kB p65 (green), lysosomes (LAMP2, red), and nuclear counterstaining (DAPI, blue) in cocultures of FACS-

sorted, mock-vector-transducedWT (WT +Mock), p62-deficient (p62�/� +Mock) or p62-transduced-p62-deficient (p62�/� + p62) Obs (DAPI, asterisks) cultured

with unlabeled MFs (DAPI; small nuclei with condensed chromatin) for 24 hr.

(B) Representative immunoblot of total NFkB p65 in postculture-isolated Ob lysates from (A). b-actin was used as a loading control.

(C) DNA-bound NF-kB p65 in lysates of the nuclear fraction of Ob cells isolated postculture from (B).

(D) Immunoblot of phosphorylated IkBa and total IkBa expression in the cytosolic fraction of cells from (B).

(E) Change (fold) in Runx2 mRNA expression of transduced Obs after 24 hr of coculture with WT MFs. Values are derived from three independent experiments.

For all panels, values represent mean ± SEM. *p < 0.05; **p < 0.01.
Together, these data indicate that p62 represses MF-depen-

dent NF-kB signaling and that it is necessary for Ob differentia-

tion and Ccl4 production through its role in autophagy.

Nbr1 Antagonizes p62, and Its Deficiency Rescues BM
MF-Dependent Ob Ccl4 Expression and HP Retention
Phox bemp1 (PB1)-domain-containing proteins p62 and Nbr1

share domain architecture and play overlapping roles in cell

signaling through protein-protein interaction. A C terminus dele-

tion of Nbr1 results in Ob differentiation (Whitehouse et al.,

2010). To identify whether Nbr1 has overlapping or distinct

roles in osteogenesis and HP retention, we crossed cytomega-

lovirus (CMV)-Cre; Nbr1f/f (Nbr1 D/D) mice (Yang et al., 2010),
Cell Re
where Nbr1 is absent in germinal cells, with p62�/� mice

(p62�/�; Nbr1D/D). We analyzed the effect of HM deficiency of

full-length Nbr1 and of double Nbr1/p62 on osteogenesis and

HP mobilization in chimeric animals. We identified that Obs iso-

lated from p62�/� bones express increased levels of Nbr1 (Fig-

ure 6E), suggesting a compensatory role. The deficiency of

Nbr1 in vivo does not significantly impair osteogenesis, Ccl4

production, or levels of circulating HP (Figures 6F–6J). Surpris-

ingly, the double deletion of Nbr1 in p62�/� HM mice (p62�/�;
Nbr1D/D HM) ameliorates bone architecture, Ccl4 production,

and HP egress, which suggests distinct roles for p62 HM and

Nbr1 in hematopoiesis and an antagonistic effect of Nbr1 on

p62 activity.
ports 9, 2084–2097, December 24, 2014 ª2014 The Authors 2091
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Figure 6. p62 Oligomerization Is Required for Ccl4 Expression, and a Double Deficiency of p62 and Nbr1 Rescues Ccl4 Expression and HP

Mobilization In Vivo

(A) Representative confocal microscopy images of Ccl4 (red) and nuclear counterstaining (DAPI, blue) inmock-vector-transducedWT (WT +Mock), p62-deficient

(p62�/� + Mock), p62 transduced-p62-deficient (p62�/� + p62), or deletion of 69-73A in p62, disrupting Phox bemp1 (PB1)-mediated p62 oligomerization,

transduced-p62-deficient (p62�/� + D69-73A) Obs (DAPI, asterisks) after coculture for 24 hr with WT MFs (DAPI; small nuclei with condensed chromatin).

(B) MFI of Ccl4 expression measured in (A). Values are derived from three independent experiments.

(C) Secreted Ccl4 concentration from 2 3 105 sorted, retrovirally transduced Obs after 24 hr culture in contact with WT MFs.

(D) Chemotaxis of CFU-C (%) toward Obs and WT MFs supplemented with Cxcl12 and bafilomycin A1 or vehicle (control).

(E) Representative immunoblot confirming the protein expressions of Nbr1 and p62 in Obs from p62�/�, Nbr1D/D, or p62�/�Nbr1D/D mice.

(F) Representative micro-CT analyses of femoral trabecular bone of WT HM, Nbr1D/D HM, or p62�/� Nbr1D/D HM mice at 16 weeks posttransplantation.

(G and H) Percent ratio of BV/TV and Tb.N of the WT HM, Nbr1D/D HM, or p62�/� Nbr1D/D HM mice analyzed in (F).

(I) BM extracellular levels of Ccl4 from WT, p62�/�, Nbr1D/D, or p62�/� Nbr1D/D mice (n = 12 mice per group).

(J) CFU-C contents in the PB of WT HM, p62�/�, Nbr1D/DHM, or p62�/� Nbr1D/D HMmice (n = 4–7 mice per group). For all panels, values represent mean ± SEM.

*p < 0.05; **p < 0.01; ***p < 0.001.
DISCUSSION

The circulation of HSC/P in the PB is crucial as part of a system of

immunosurveillance of the peripheral organs and to foster the

local production of tissue-resident innate immune cells (Mass-

berg et al., 2007). Niche regulation of HP trafficking in vivo is

incompletely understood. Cellular and molecular specificity, as

well as crosstalk, are important aspects in order to understand

how cell signaling within complex networks generates such pre-
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cise cellular responses to a myriad of different stimuli. A key to

this process is intracellular protein scaffolds, which are multi-

domain proteins that assemble specific signaling complexes in

different cellular locations so as to assure a spatially and tempo-

rarily controlled signal.

The role of Obs in HSC/P traffic remains controversial, and the

genetic characterization of the molecular signatures within the

Ob microenvironment, which have been implicated in contrib-

uting to HSC/P trafficking in vivo, is quite incomplete. Previous
hors



reports have indicated that Ob activity controls HSC/P retention

within the BM (Calvi et al., 2003; Raaijmakers et al., 2010; Visnjic

et al., 2004; Zhang et al., 2003), and MFs that are in contact with

Obs (called osteomacs) (Winkler et al., 2010) have been recently

implicated as intermediate cells in granulocyte colony-stimu-

lating factor mobilization, Ob depletion, and in HSC/P egress

from the BM (Katayama et al., 2006; Winkler et al., 2012). How-

ever, modulation of Ob numbers does not necessarily alter

HSC numbers (Kiel et al., 2007; Zhu et al., 2007), suggesting

that functional changes in Ob activity may be responsible for

their effect on BM HSC/P retention. Cxcl12-dependent progen-

itor retention (Greenbaum et al., 2013) and B lymphopoiesis (Zhu

et al., 2007; Greenbaum et al., 2013; Ding and Morrison, 2013)

are functional roles that have been assigned to Ob lineage pop-

ulations of the BM. However, the specific role of Obs in HSC/P

mobilization remains controversial (Kiel et al., 2007; Ding and

Morrison, 2013).

The deficiency of p62 in the nonhematopoietic compartment

of BM results in osteopenia as a result of loss of Ob differentia-

tion and induces egress of ST-HSC and myeloid progenitors.

This effect is due to impaired Ob signaling, because the defi-

ciency of p62 in Obs, as identified by the expression of ColIa1

driven by its 2.3 Kb promoter/enhancer, phenocopies the mobi-

lization of HSC/P of mice with p62-deficient HM (Dacquin et al.,

2002). However, the deficiency of p62 does not result in either

significant mobilization of long- or medium-term repopulating

HSC, or in changes in the BM content or mobilization of B lym-

phopoietic cells, suggesting that p62 regulates some, but not

all, of the activities associated with Ob activity in the BM (Winkler

et al., 2010; Chow et al., 2011; Zhu et al., 2007; Greenbaum et al.,

2013). This mobilization effect results in decreased homing of

ST-HSC and LSK/LK progenitors in nonmyeloablated recipients,

but not in myeloablated recipients. The effect of myeloablation is

restored by transplantation, because p62�/� HM mice display

increased numbers of circulating HSC/P after transplantation.

We hypothesized that a WT radiosensitive cell population with

the ability to be regenerated by 6 weeks posttransplantation

may be responsible for this differential effect and may contribute

to significant changes in the content or activity of the osteo-

blastic niche. Several reports have provided information about

the functional defects and apoptosis of irradiated MFs in vivo

in C57Bl/6 mice as early as within the first 24 hr after irradiation

(Coates et al., 2008; reviewed in Mukherjee et al., 2014). There-

fore, tissue MFs are major candidates in relation to the BM Ob

niche. Other radiosensitive populations such as osteoclasts,

which have also been reported to control HSC/P traffic in the

BM (Kollet et al., 2006), were analyzed in the BM of WT HM

andp62�/�HMmice and found not to be regenerated by 6weeks

posttransplantation (data not shown).

A putative effect of p62 on BM HSC/P proliferation (Meenhuis

et al., 2011) as a downstream target of microRNAs 17/20/93/106

was explored. Our data could not confirm changes in HSC/P

proliferation, as assessed by flow cytometry analysis of bromo-

deoxyuridine uptake in vivo, in either primary mice or HM

chimeric BM HSC/P. Analysis of p62�/� and p62�/� HM mice

for as long as 6 months after birth or transplantation did not

show any significant sign of hematopoietic failure (data not

shown). Whereas it is possible that long-term aging of p62�/�
Cell Re
or p62�/� HM mice results in significant defects in BM HSC/P

content, our data focus on the effect of p62 expression on the

ST-HSC and myeloid progenitor populations.

This report describes and analyzes a mechanism of MF-Ob-

dependent HP retention in the BM, in which MFs regulate Ob

differentiation. We explored the existence of functional crosstalk

between MFs and Ob lineage cells that would regulate HSC/P

trafficking and identified a three-cell (MF, Ob, and HSC/P)

interplay of interactions in vivo, which could be recapitulated

and mechanistically analyzed in cellular models. Our data pro-

vide evidence that (1) cell contact between p62 in MFs and

Obs induces Ob NF-kB activity and differentiation; (2) the

maintenance of low levels of Ob NF-kB activity is crucial for

Ob differentiation, Cxc12-directed chemotaxis, BM retention of

myeloid progenitors, and the upregulation of NF-kB activity

secondary to the loss of p62 results in egression of myeloid

progenitors and ST-HSC to the PB; (3) autophagy p62 is a

negative regulator of NF-kB activity controlling the levels of

p-FAK, p-IkBa, and NF-kB translocation; and (4) Nbr1, a PB1-

binding partner of p62, antagonizes p62 activity as a negative

regulator, and the loss of Nbr1 rescues the deficient osteogene-

sis of p62-deficient animals. This signaling pathway is summa-

rized in Figure S6E.

Circulating HP can foster the local production of tissue-resi-

dent innate immune cells in response to inflammatory signals

(Baldridge et al., 2010; Essers et al., 2009; Massberg et al.,

2007). The transcription factor NF-kB has a key role in inflamma-

tion and immune responses and has been recently shown to play

a role in myeloid progenitor response to stress hematopoiesis

(Zhao et al., 2014). Inflammatory signals through NF-kBprobably

underlie the stress circulation of HSC/P. MFs are well-known

mediators of intrinsic activation of NF-kB activity in response

to infection or other inflammatory cues. Here, we demonstrate

that MF signaling is required for Ob differentiation and Ob NF-

kB activation and is crucial for the expression and production

of Ob Ccl4, a modulator of Cxcl12 activity that affects HP reten-

tion in the BM (Basu and Broxmeyer, 2009). Obs would act as

signal amplifiers and coordinators of inflammatory signals initi-

ated by infection-responsive MFs. Our data reveal Ccl4 as a

chemokine expressed and secreted by differentiated Obs in

contact with BM MFs and confirm in vivo previous data on the

role of Ccl4 as a modulator of Cxcl12-dependent HSC/P traffic

in the BM (Basu and Broxmeyer, 2009).

Obs have high autophagy activity during differentiation (Liu

et al., 2013), and NF-kB signaling prevents Ob differentiation

(Chang et al., 2009). Oligomerization of p62 is required for auto-

phagosome formation (Itakura andMizushima, 2011), where p62

aggregates ubiquitinated proteins (Bjørkøy et al., 2006) and has

been shown to regulate the degradation of the RelA component

of NF-kB in Obs through selective autophagy (Chang et al.,

2013). We have identified that p62 attenuates MF-dependent

NF-kB signaling in Obs through the downregulation of pFAK,

NF-kB, and p-IkBa, which results in impaired NF-kB activation

and Ob differentiation in vivo (Figure S6E). Pharmacological inhi-

bition of NF-kB in MF/p62�/� Ob cocultures restored Ob differ-

entiation and Cxcl12-driven chemotaxis, confirming the mecha-

nistic role of NF-kB in the osteogenic defect of p62-deficient

mice. Neutralization of Ccl4 and inhibition of autophagy also
ports 9, 2084–2097, December 24, 2014 ª2014 The Authors 2093



restored the deficient Cxcl12-directed chemotaxis seen in the

same cocultures, indicating that all are dependent on the same

pathway and regulated by p62. Finally, restoration of p62

expression in the Obs represses NF-kB activity to levels similar

to WT and induces Ob differentiation, Ccl4 expression, and pro-

genitor retention in vivo. Our data also suggest that, during

Ob-MF crosstalk, p62 relies on p62-PB1 oligomerization for

Ccl4 expression.

BMMFs are essential to our understanding of Ob activity, os-

teogenesis, and HP traffic. The interaction between differenti-

ating cell- and niche-derived signals has also been shown to

play an important role in Drosophila HP maintenance (Mondal

et al., 2011). Clodronate-induced deficiency of MFs results in

progenitor mobilization (Winkler et al., 2010). We have confirmed

that the deficiency of CD11b+/F4/80+/CD68+/CD115+ BM MFs

does result in a 4-fold increase in myeloid progenitor mobiliza-

tion, which is �2-fold higher than the mobilization observed in

p62-deficient animals. Interestingly, the Ob p62 deficiency

does not add or synergize with the depletion of MFs, indicating

that the effect of Ob p62 deficiency on myeloid progenitor reten-

tion depends on the existence of BM MFs in vivo. Subpopula-

tions of MFs may be specifically controlling myeloid progenitor

retention. BM CD169+ MFs have been shown to promote the

retention of HSC/P in the mesenchymal stem cell niche (Chow

et al., 2011). Our experiments did not specifically address the

role of Ob activity in relation to CD169+ MFs, because the

cultured primary MFs did not express CD169. It is possible

that CD169+ BM MFs share the activities of BM CD169� MFs

in regards to the activation of ObNF-kB activity and downstream

effects; however, this point is unproven and will require further

dissection in vivo of the specific MF populations responsible

for Ob NF-kB activity.

In our system, the interaction between Obs andMFs has been

exclusively contact dependent as some of the phenotypes, such

as upregulation of Ccl4 expression, could not be reproduced in

noncontact transwell systems. We provide evidence that p62

regulates osteogenetic signals in an Ob-MF coculture setup.

This signal, probably mediated by integrins, relies, at least in

part, on FAK or other redundant family proteins that are respon-

sible for cell-to-cell anchoring. Integrins link the inside of a cell

with its outside environment and, in doing so, regulate a wide

variety of cell behaviors. Integrins play an important role in angio-

genesis and cell migration; however, their functions in bone for-

mation are less clear. The majority of integrin signaling proceeds

through FAK, an essential component of the focal adhesion com-

plex. The loss of FAK does not perturb Ob differentiation in vitro

or in vivo, owing to the compensatory increase in Pyk2 in Obs

(Kim et al., 2007). FAK and Pyk2 are substrates of autophagy,

and there is emerging evidence implicating autophagy as an

important mediator of bone cell function in normal physiology

(Hocking et al., 2012) and in pathology as documented by the

role of p62 mutations in Paget disease of the bone (Laurin

et al., 2002; Rea et al., 2013).

Genetic truncation of Nbr1, a selective autophagic receptor for

degradation of ubiquitinated substrates that can interact with

p62, but not LC3, leads to increased Ob differentiation and activ-

ity in vivo (Whitehouse et al., 2010). As shown by our data, Nbr1

deficiency restores in vivo BMCcl4 production and HPmobiliza-
2094 Cell Reports 9, 2084–2097, December 24, 2014 ª2014 The Aut
tion, suggesting that it plays an inhibitory role on the p62-depen-

dent regulation of NF-kB activity in Obs.

Our data define a signaling network between BM MFs and

neighboring Obs with activity on the HP niche. We propose the

existence of a regulatory signal from BM-resident ‘‘osteo-mac-

rophages,’’ where Ob NF-kB signaling is connected with the im-

munosurveillance functions of circulatory HP. We also propose

the existence of a homeostatic regulatory role for selective auto-

phagy regulated by p62 on the NF-kB-signaling pathway in Obs,

which is required for osteogenesis and BM progenitor retention.

A connection between bone, innate immunity, and progenitor

traffic is proposed, which has the ability to amplify or inhibit

MF-dependent inflammatory signals. Our data support a role

for p62 in the regulation of the intercellular signaling at the BM

MF-Ob niche and identifies the key molecular determinants

of signaling that regulate ST-HSC and myeloid progenitor

trafficking.

EXPERIMENTAL PROCEDURES

Mice

All animals were treated in accordance with the NIH Guide for the Care and

Use of Laboratory Animals, and all protocols were approved by institutional

care and use committees for animal research at the Cincinnati Children’s Hos-

pital Research Foundation.

p62�/�, p62�/�; Erk1�/�, and CMV-Cre; Nbr1D/D mice have been described

previously (Lee et al., 2010; Rodriguez et al., 2006; Yang et al., 2010). p62�/�

mice were crossed with Nbr1D/D mice to generate p62�/�; Nbr1D/D mice.

Genetically modified Cola1(I) (2.3 Kb promoter/enhancer)-Cre mice (Dacquin

et al., 2002) were crossed with p62f/f mice (Müller et al., 2013) for generation

of osteolineage-specific deletion of p62. All primary mice were analyzed

between 6 and 10 weeks of age. Chimeric (HM) mice were generated by

noncompetitive transplantation of WT BM nucleated cells (BMNCs) from

B6.SJLPtprca Pepcb/BoyJ(CD45.1+) mice into lethally irradiated 6- to 8-week-old

CD45.2+ WT or p62-deficient mice. All mice were maintained in C57Bl/6 back-

ground. C57Bl/6 (CD45.2+) and B6.SJLPtprca Pepcb/BoyJ(CD45.1+) mice were

obtained commercially (Jackson Laboratory; Harlan Laboratories). Littermate

mice from the same breeding were used in all experiments. Ubiquitin C-EGFP

mice have been described previously. These mice had been backcrossed

greater than ten generations into C57Bl/6 mice.

Quantification of HP Egress

PB total and differential counts were analyzed using a Hemavet 950 (DREW

Scientific). PB was isolated by retro-orbital bleeding. Hematopoietic progeni-

tors isolated from BM, spleen, or PB were grown on methylcellulose medium

supplemented with cytokine cocktails (Stem Cell Technologies), and colony-

forming progenitors (CFU-C) were scored on day 9.

HSC Repopulation

Adult recipient mice were lethally irradiated with a Cs137 gamma irradiator as

previously described (Sengupta et al., 2011). For competitive repopulation ex-

periments, CD45.2+ BMNCs or PB (50–150 ml) were mixed with 500,000–3 3

106 CD45.1+ BMNCs and were transplanted into lethally irradiated

B6.SJLPtprca Pepcb/BoyJ(CD45.1+)-recipient mice. HSC engraftment was

measured by chimera assessment using flow cytometry at 6 weeks, 10 weeks,

and 16 weeks posttransplantation. Chimera level was normalized to WT levels

as 100% to allow interexperiment comparison.

Homing Assays

For the homing assay to nonmyeloablated BM, 20–25 3 106 carboxyfluores-

cein diacetate, succinimidyl ester (CFSE)-labeled BM cells from WT mice

were prepared and used for injection though the tail vein injection. WT or

p62�/� animals were used as recipients and sacrificed after 3 hr posttrans-

plantation. The single-cell suspensions of the BM were subjected to FACS
hors



analysis to measure homing of HSC (CFSE+Lin�Sca-1+cKit+CD135�), LSK,
and LK cells. The percent of homing was calculated from the input and

output cell numbers. To measure homing to myeloablated BM, 23 3 106 WT

BM cells were transplanted into lethally irradiated WT or p62�/�-recipient
mice. Sixteen hours after transplant, the recipient mice were sacrificed and

the BM cells were harvested and cultured in triplicate for CFU-C assay as

well as FACS analysis. BM homing was calculated as previously reported

(Boggs, 1984).

The remainder of the experimental procedures are described in the Supple-

mental Experimental Procedures section.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.11.031.
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hors



(2010). Bone marrow macrophages maintain hematopoietic stem cell (HSC)

niches and their depletion mobilizes HSCs. Blood 116, 4815–4828.

Winkler, I.G., Pettit, A.R., Raggatt, L.J., Jacobsen, R.N., Forristal, C.E., Barb-

ier, V., Nowlan, B., cisterne, A., Bendall, L.J., Sims, N.A., and Lévesque, J.P.
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