737 research outputs found

    Perspectives on the CAP Theorem

    Get PDF
    Almost twelve years ago, in 2000, Eric Brewer introduced the idea that there is a fundamental trade-off between consistency, availability, and partition tolerance. This trade-off, which has become known as the CAP Theorem, has been widely discussed ever since. In this paper, we review the CAP Theorem and situate it within the broader context of distributed computing theory. We then discuss the practical implications of the CAP Theorem, and explore some general techniques for coping with the inherent trade-offs that it implies

    On Simple Back-Off in Unreliable Radio Networks

    Get PDF
    In this paper, we study local and global broadcast in the dual graph model, which describes communication in a radio network with both reliable and unreliable links. Existing work proved that efficient solutions to these problems are impossible in the dual graph model under standard assumptions. In real networks, however, simple back-off strategies tend to perform well for solving these basic communication tasks. We address this apparent paradox by introducing a new set of constraints to the dual graph model that better generalize the slow/fast fading behavior common in real networks. We prove that in the context of these new constraints, simple back-off strategies now provide efficient solutions to local and global broadcast in the dual graph model. We also precisely characterize how this efficiency degrades as the new constraints are reduced down to non-existent, and prove new lower bounds that establish this degradation as near optimal for a large class of natural algorithms. We conclude with an analysis of a more general model where we propose an enhanced back-off algorithm. These results provide theoretical foundations for the practical observation that simple back-off algorithms tend to work well even amid the complicated link dynamics of real radio networks

    Structuring Unreliable Radio Networks

    Get PDF
    In this paper we study the problem of building a connected dominating set with constant degree (CCDS) in the dual graph radio network model. This model includes two types of links: reliable links, which always deliver messages, and unreliable links, which sometimes fail to deliver messages. Real networks compensate for this differing quality by deploying low-layer detection protocols to filter unreliable from reliable links. With this in mind, we begin by presenting an algorithm that solves the CCDS problem in the dual graph model under the assumption that every process u is provided with a local "link detector set" consisting of every neighbor connected to u by a reliable link. The algorithm solves the CCDS problem in O((Delta log2(n)/b) + log3(n)) rounds, with high probability, where Delta is the maximum degree in the reliable link graph, n is the network size, and b is an upper bound in bits on the message size. The algorithm works by first building a Maximal Independent Set (MIS) in log3(n) time, and then leveraging the local topology knowledge to efficiently connect nearby MIS processes. A natural follow up question is whether the link detector must be perfectly reliable to solve the CCDS problem. To answer this question, we first describe an algorithm that builds a CCDS in O(Delta polylog(n)) time under the assumption of O(1) unreliable links included in each link detector set. We then prove this algorithm to be (almost) tight by showing that the possible inclusion of only a single unreliable link in each process's local link detector set is sufficient to require Omega(Delta) rounds to solve the CCDS problem, regardless of message size. We conclude by discussing how to apply our algorithm in the setting where the topology of reliable and unreliable links can change over time

    Self-stabilizing robot formations over unreliable networks

    Get PDF
    We describe how a set of mobile robots can arrange themselves on any specified curve on the plane in the presence of dynamic changes both in the underlying ad hoc network and in the set of participating robots. Our strategy is for the mobile robots to implement a self-stabilizing virtual layer consisting of mobile client nodes, stationary Virtual Nodes (VNs), and local broadcast communication. The VNs are associated with predetermined regions in the plane and coordinate among themselves to distribute the client nodes relatively uniformly among the VNs' regions. Each VN directs its local client nodes to align themselves on the local portion of the target curve. The resulting motion coordination protocol is self-stabilizing, in that each robot can begin the execution in any arbitrary state and at any arbitrary location in the plane. In addition, self-stabilization ensures that the robots can adapt to changes in the desired target formation.National Science Foundation (U.S.) (Grant No. CNS-0614993

    Ground Motions Induced by the March 11, 2018, Implosion of the Capital Plaza Tower, Frankfort, Kentucky

    Get PDF
    The demolition by implosion of the Capital Plaza Tower in downtown Frankfort provided an opportunity to record seismic waves from a known source of seismic energy in order to observe local ground-motion amplification and resonance within the underlying unconsolidated sediment. The Kentucky Geological Survey deployed three strong-motion accelerographs at approximately equal distances around the tower to record ground motions induced by its collapse. The KGS instruments were installed at sites with different underlying geology: one on bedrock and two on Kentucky River Valley unconsolidated sediments. Using images captured by a high-speed video camera, with timing synchronized with the clock of one of the strong-motion accelerographs, the sequence of ground-motion-inducing events from the tower demolition (blast explosions and the collapsing tower’s impact with the ground) was identified in the ground-motion time histories recorded at the rock site. This allowed the ground motions from the tower collapse recorded at all stations deployed for the event to be isolated and analyzed. The ground motions from the tower collapse recorded at the observation sites were weak and were likely imperceptible to humans. The detected motions, which had modified Mercalli intensities of only I to II at the rock and soil sites, respectively, were unlikely to have caused any damage there. Seismic-wave resonance within the Kentucky River Valley sediment was identified from the analysis of these recordings. The resonance frequencies were similar at all KGS soil sites, and also were similar to those observed on seismographs deployed by the Energy and Environment Cabinet’s Explosives and Blasting Branch. These observations indicate that in the unlikely event of a nearby strong earthquake, shaking is expected to be amplified within the unconsolidated Kentucky River Valley sediments underlying downtown Frankfort

    Gut γδ T cells as guardians, disruptors and instigators of cancer

    Get PDF
    Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations—γδ intraepithelial lymphocytes (γδ IELs)—and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy

    Copy Number Variation Shapes Genome Diversity in Arabidopsis Over Immediate Family Generational Scales

    Get PDF
    Arabidopsis thaliana is the model plant and is grown worldwide by plant biologists seeking to dissect the molecular underpinning of plant growth and development. Gene copy number variation (CNV) is a common form of genome natural diversity that is currently poorly studied in plants and may have broad implications for model organism research, evolutionary biology, and crop science. Herein, comparative genomic hybridization (CGH) was used to identify and interrogate regions of gene CNV across the A. thaliana genome. A common temperature condition used for growth of A. thaliana in our laboratory and many around the globe is 22 °C. The current study sought to test whether A. thaliana, grown under different temperature (16 and 28 °C) and stress regimes (salicylic acid spray) for five generations, selecting for fecundity at each generation, displayed any differences in CNV relative to a plant lineage growing under normal conditions. Three siblings from each alternative temperature or stress lineage were also compared with the reference genome (22 °C) by CGH to determine repetitive and nonrepetitive CNVs. Findings document exceptional rates of CNV in the genome of A. thaliana over immediate family generational scales. A propensity for duplication and nonrepetitive CNVs was documented in 28 °C CGH, which was correlated with the greatest plant stress and infers a potential CNV–environmental interaction. A broad diversity of gene species were observed within CNVs, but transposable elements and biotic stress response genes were notably overrepresented as a proportion of total genes and genes initiating CNVs. Results support a model whereby segmental CNV and the genes encoded within these regions contribute to adaptive capacity of plants through natural genome variation

    Antimicrobial Stewardship Training for Infectious Diseases Fellows: Program Directors Identify a Curriculum Need

    Get PDF
    A needs assessment survey of infectious diseases (ID) training program directors identified gaps in educational resources for training and evaluating ID fellows in antimicrobial stewardship. An Infectious Diseases Society of America-sponsored core curriculum was developed to address that need

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    A Search for Technosignatures Around 31 Sun-like Stars with the Green Bank Telescope at 1.15-1.73 GHz

    Full text link
    We conducted a search for technosignatures in April of 2018 and 2019 with the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. These observations focused on regions surrounding 31 Sun-like stars near the plane of the Galaxy. We present the results of our search for narrowband signals in this data set as well as improvements to our data processing pipeline. Specifically, we applied an improved candidate signal detection procedure that relies on the topographic prominence of the signal power, which nearly doubles the signal detection count of some previously analyzed data sets. We also improved the direction-of-origin filters that remove most radio frequency interference (RFI) to ensure that they uniquely link signals observed in separate scans. We performed a preliminary signal injection and recovery analysis to test the performance of our pipeline. We found that our pipeline recovers 93% of the injected signals over the usable frequency range of the receiver and 98% if we exclude regions with dense RFI. In this analysis, 99.73% of the recovered signals were correctly classified as technosignature candidates. Our improved data processing pipeline classified over 99.84% of the ~26 million signals detected in our data as RFI. Of the remaining candidates, 4539 were detected outside of known RFI frequency regions. The remaining candidates were visually inspected and verified to be of anthropogenic nature. Our search compares favorably to other recent searches in terms of end-to-end sensitivity, frequency drift rate coverage, and signal detection count per unit bandwidth per unit integration time.Comment: 20 pages, 8 figures, in press at the Astronomical Journal (submitted on Sept. 9, 2020; reviews received Nov. 6; re-submitted Nov. 6; accepted Nov. 17
    corecore