11 research outputs found

    Big data analytics for intra-logistics process planning in the automotive sector

    Get PDF
    The manufacturing sector is facing an important stage with Industry 4.0. This paradigm shift impulses companies to embrace innovative technologies and to pursuit near-zero fault, near real-time reactivity, better traceability, and more predictability, while working to achieve cheaper product customization. The scenario presented addresses multiple intra-logistic processes of the automotive factory Volkswagen Autoeuropa, where different situations need to be addressed. The main obstacle is the absence of harmonized and integrated data flows between all stages of the intra-logistic process which leads to inefficiencies. The existence of data silos is heavily contributing to this situation, which makes the planning of intra-logistics processes a challenge. The objective of the work presented here, is to integrate big data and machine learning technologies over data generated by the several manufacturing systems present, and thus support the management and optimisation of warehouse, parts transportation, sequencing and point-of-fit areas. This will support the creation of a digital twin of the intra-logistics processes. Still, the end goal is to employ deep learning techniques to achieve predictive capabilities, all together with simulation, in order to optimize processes planning and equipment efficiency. The work presented on this thesis, is aligned with the European project BOOST 4.0, with the objective to drive big data technologies in manufacturing domain, focusing on the automotive use-case

    Manufacturing Data Analytics for Manufacturing Quality Assurance

    Get PDF
    The authors acknowledge the European Commission for the support and funding under the scope of Horizon2020 i4Q Innovation Project (Agreement Number 958205) and the remaining partners of the i4Q Project Consortium.Nowadays, manufacturing companies are eager to access insights from advanced analytics, without requiring them to have specialized IT workforce or data science advanced skills. Most of current solutions lack of easy-to-use advanced data preparation, production reporting and advanced analytics and prediction. Thanks to the increase in the use of sensors, actuators and instruments, European manufacturing lines collect a huge amount of data during the manufacturing process, which is very valuable for the improvement of quality in manufacturing, but analyzing huge amounts of data on a daily basis, requires heavy statistical and technology training and support, making them not accessible for SMEs. The European i4Q Project, aims at providing an IoT-based Reliable Industrial Data Services (RIDS), a complete suite consisting of 22 i4Q Solutions, able to manage the huge amount of industrial data coming from cheap cost-effective, smart, and small size interconnected factory devices for supporting manufacturing online monitoring and control. This paper will present a set of i4Q services, for data integration and fusion, data analytics and data distribution. Such services, will be responsible for the execution of AI workloads (including at the edge), enabling the dynamic deployment industrial scenarios based on a cloud/edge architecture. Monitoring at various levels is provided in i4Q through scalable tools and the collected data, is used for a variety of activities including resource monitoring and management, workload assignment, smart alerting, predictive failure and model (re)training.publishersversionpublishe

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    História da educação no Brasil: a constituição histórica do campo (1880-1970)

    No full text
    O artigo aborda a constituição do campo da história da educação no Brasil de dois prismas. No primeiro, elabora um histórico da disciplina a partir de três pertencimentos: à tradição historiográfica do Instituto Histórico e Geográfico do Brasil (IHGB); às escolas de formação para o magistério e à produção acadêmica entre os anos 1940 e 1970. No segundo, enfoca os trabalhos realizados nos últimos 20 anos, apontando temas e períodos de interesse e abordagens teóricas mais recorrentes.<br>This article tackles on the structuring of the field of history of education in Brazil through two angles. The first one elaborates on the history of the discipline from three views: the historiographic tradition of the Historical and Geographical Institute of Brazil ( IHGB); the development of teacher's colleges and the academic production from 1940 to 1970. The second one, focus on works done during the last 20 years, pointing out to topics, periods of interest and the most recurrent theoretical approaches

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore