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Abstract

The manufacturing sector is facing an important stage with Industry 4.0. This paradigm

shift impulses companies to embrace innovative technologies and to pursuit near-zero

fault, near real-time reactivity, better traceability, and more predictability, while working

to achieve cheaper product customization.

The scenario presented addresses multiple intra-logistic processes of the automotive fac-

tory Volkswagen Autoeuropa, where different situations need to be addressed. The main

obstacle is the absence of harmonized and integrated data flows between all stages of the

intra-logistic process which leads to inefficiencies. The existence of data silos is heavily

contributing to this situation, which makes the planning of intra-logistics processes a

challenge.

The objective of the work presented here, is to integrate big data and machine learn-

ing technologies over data generated by the several manufacturing systems present, and

thus support the management and optimisation of warehouse, parts transportation, se-

quencing and point-of-fit areas. This will support the creation of a digital twin of the

intra-logistics processes. Still, the end goal is to employ deep learning techniques to

achieve predictive capabilities, all together with simulation, in order to optimize pro-

cesses planning and equipment efficiency.

The work presented on this thesis, is aligned with the European project BOOST 4.0, with

the objective to drive big data technologies in manufacturing domain, focusing on the

automotive use-case.

Keywords: Industry 4.0, Data Mining, Machine Learning, Big Data, Digital-Twin
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Resumo

O setor de manufatura enfrenta uma etapa importante com a Indústria 4.0. Esta mu-

dança de paradigma impele as empresas a adotar tecnologias inovadoras para atingir

falhas quase nulas, reatividade em tempo real, melhor rastreabilidade e previsibilidade,

enquanto trabalham para obter uma customização mais barata do produto.

O cenário em estudo aborda vários processos intra-logísticos da fábrica automóvel Volkswa-

gen Autoeuropa, onde diferentes situações necessitam melhoramentos. O principal obs-

táculo é a ausência de fluxos de dados e integração entre todas as etapas do processo

intra-logístico, o que leva a ineficiências. A existência de silos de dados contribui forte-

mente para estas situações, o que torna o planeamento de processos um desafio.

O objetivo do trabalho apresentado aqui é integrar tecnologias de big data e machine le-

arning nos dados gerados pelos diversos sistemas de produção presentes e, assim, apoiar

o gerenciamento e a otimização das áreas de armazém, transporte de peças, sequencia-

mento e pontos de aplicação. Esta dissertação apoiará também a criação de um gêmeo

digital dos processos intra-logísticos, ainda assim, o objetivo final é empregar técnicas de

deep learning para obter capacidades preditivas e juntamente com a simulação otimizar

o planeamento de processos e a eficiência de equipamentos.

O trabalho apresentado neste documento está embebido no projeto europeu BOOST 4.0,

com o objetivo de impulsionar tecnologias de big data no domínio da manufatura, com

foco no setor automóvel.

Palavras-chave: Indústria 4.0, Machine Learning, Big Data, Digital Twin
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1
Introduction

We live in times of innovation in all fields, and thanks to constant technological de-

velopments, globalization, increasing customer expectations and aggressive markets all

through the world, companies, business’s and academics are working to apply these revo-

lutionary innovations in our advantage.

In the last few years major advances in technologies like internet of things, big data,

cloud computing, artificial intelligence and many others are fuelling a new Industrial

revolution and in result of that smart manufacturing is becoming the focus of the global

manufacturing transformation.

This new revolution is called Industry 4.0 and like in the previous industrial revolutions,

technology changed the paradigm, the first one created the mechanization of processes

with the steam engine, the second introduced mass production thanks to electricity and

the third offered automation due to the introduction of electronic devices. The industrial

revolutions and it’s driving technologies are represented in figure 1.1 .

Figure 1.1: Industrial revolutions

Today manufacturing industries are changing from the mass production of the past

to customized production to meet the growing customer expectations [1].

Another trending topic is Big Data due to the enormous growth of data available in the

1



CHAPTER 1. INTRODUCTION

past few years, a study by IDC (International Data Corporation) titled “data age 2025”

predicts that worldwide data creation will grow to an enormous 163 zettabytes by 2025,

that is ten times more than 2017.[2]

This paradigm shift brings a huge amount of data associated that needs to be properly

processed in order to achieve the desired outcomes. Integrated analysis for the manufac-

turing big data is beneficial to all aspects of manufacturing.[3] But not just manufacturing

can benefit from data all organizations whether large or small, with a data-dependent

business model or not can benefit from a better understanding of its data [4]. Big data

analytics is a trending subject that companies from all fields are working into their busi-

nesses, and with the value and quantity of data rapidly growing every year, we can expect

the trend to continue for multiple years making big data an important field to research

nowadays.

In the subject of industry 4.0 a technology that also benefits from data growth is Digital-

Twin and is likely to become more relevant over the next decade [5]. Digital twin is a live

model useful to gather business insights that can be implemented for a specific asset, for

an entire facility or even for an individual product.

The concept of machine learning has been around for decades and now it is more relevant

than ever because there is an increasing availability of data and computing power, with

fast paced developments in the area of algorithms the applications for machine learning

in manufacturing will increase [6].

The combination of machine learning and digital-twin can amplify both technologies

benefits, where as digital twin can test the accuracy of the machine learning models and

different scenarios suggested by the machine learning layers.

The logistics sector does not escape the trends and some major changes are predicted, in

fact, logistics represents an appropriate application area for industry 4.0 and its technolo-

gies [7]. Logistics has always been a data driven area of business and now more than ever,

with the perspectives of real-time tracking of material and product flows[8], improved

transport handling, risk management and other features companies need to prepare their

logistics departments for the incoming growth of data. “In fact, one could argue that

industry 4.0 in its pure vision can only become reality if logistics is capable of providing

production systems with the needed input factors . . . ”[7].

This dissertation is embedded in the VWAE (Volkswagen Autoeuropa) pilot of the biggest

European initiative in Big Data for Industry 4.0 called BOOST 4.0. This project is funded

by the European union and pretends to lead the construction of the industrial European

data space and provide the industrial sector with the necessary tools to obtain the maxi-

mum benefit from Big Data.

2



1.1. PROBLEM DESCRIPTION

1.1 Problem Description

As previously stated, this dissertation is embedded in the VWAE pilot that deals with im-

proving efficiency on intralogistics operations using new digital technologies, developed

under the Industry 4.0 paradigm.

To acquire the necessary knowledge about the business, logistics process and general

work of the factory an internship for the duration of the work was seen by both parts as a

positive measure and the most fruitful way to proceed.

Intralogistics is the process responsible for components flow since the moment they arrive

at the factory to the moment they are applied on the final product. The logistics of deliver-

ing parts to the assembly line plays a major role in the success of a car manufacturer and

consequently, optimizations to the logistics environment reduce substantially production

costs.

Within this project, we started by focusing on a single component, in this case car batter-

ies because this component goes into every car produced, it is reasonably valuable and

easy to track. This process is illustrated by figure 1.2.

Figure 1.2: current operations of the logistics processes

The processes within intra-logistics on VWAE are the following and they are repre-

sented in figures 1.3,1.4 and 1.5 [9]:

• Receiving – On the receiving area trucks are traditionally unloaded by a manually

forklift operation, and then the unit loads are transported to the warehouse where

they will be stored.

• Warehousing – On the warehouse parts are stored either in shelve or block storage

concept. System wise there is one database to control the parts coming from each

truck and then a separate database, which registers the unloading, transportation

and storing of the material in the warehouse.

• Transport (to sequencing) - An automatic line feeding system based on real vehicle

demands generates parts call offs after interacting with real time stock data to re-

plenish the points of use at commissioning areas called SUMA’s, or directly at the

3



CHAPTER 1. INTRODUCTION

assembly line, for parts that do not require sequencing, using a pull methodology/-

concept. The transport is then made by tow trucks, and the record of these internal

transports is stored in a different database. In this process there is an area called

Bahnof where parts are placed by the warehouse forklifts to wait for transport to

the production line or sequencing.

• Sequencing - The next step will be the picking process for the correct sequencing in

the SUMA. Here, the operator follows system electronic picking of parts according

to the vehicle sequence on the production line. These operations are executed under

the principles of the lean production system[10] [11].

• Transport (to point of fit) – The transport from the sequencing areas to the point

of application is made either by AGV’s (Automated Guided Vehicles) or again tow

trucks. AGV’s have data stored in different databases depending on its manufac-

turer.

• point of fit - Finally, the parts are manually delivery at the point of fit by the line-

feeding operator.

Figure 1.3: Receiving and warehousing at VWAE

Throughout the years, VWAE has done numerous optimizations in its logistics pro-

cess, namely, with the introduction of AGV’s and with the implementation of auxiliary

sequencing tools. Having this said, there are still some constraints.

The main issue regarding logistic processes is that there is an absence of a “Big picture”,

all of the different parts of the process are disconnected on data and on knowledge, there

is not an integrated data source nor a single entity with a deep understanding of the

whole process.

The lack of communication and integration between the different systems create data

silos which makes managing process flows throughout the different steps a challenging

task, and the multiple generations of technologies found aggravate this issue since recent

systems are prepared for the 4.0 revolution and older ones require multiple steps to even

4



1.1. PROBLEM DESCRIPTION

Figure 1.4: Bahnhof area at VWAE

Figure 1.5: sequencing and batteries POF at VWAE

gather data. The complexity of the logistics process on a plant of this size and the multi-

source, multi-structured, high volume, variety and veracity nature of the data make it

very hard to handle, analyse and correlate.

Most of the organizations have huge volumes of structured data housed in different data

sources such as mainframes and databases, and also unstructured data sets. Providing

integrated data from such a variety of sources is prerequisite for effective business intelli-

gence[12].

Gathering data from heterogenous sources and manipulating them to prepare for big data

analysis processes is still a big problem[13]. The logistics department at VWAE suffers

from the absence of any predictive and adaptive functionalities and that force logistics

planners to use conventional methods, relying on past experience and trial and error for

every decision they make. This reduces the ability of optimizing the system because it
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CHAPTER 1. INTRODUCTION

takes considerable time, effort and, until deployment, there is no way of validating these

changes or to predict their outcomes with an acceptable degree of confidence.

Data errors are present with some regularity, due to lack of both data validation and

awareness of the importance of data validity. This problem reduces the confidence of

both the decision makers and planners at VWAE in the data available which leads to its

lack of use and value.

One important aspect of logistics in manufacturing is warehouse management. Managing

a warehouse is very complex because of the multiple variables to consider like physical

space, internal transport times, inventory costs, security and material quality to name a

few. The warehousing management is also constantly under pressure to feed the produc-

tion line because stoppages can be very expensive.

Warehouse management at VWAE is no different and must account for all these vari-

ables for a few thousand different parts with very different characteristics and processes

associated. For our selected part, car batteries, inventory management is especially im-

portant for multiple reasons, it’s a valuable component so stall money is a factor, it has

to be stored in ground level and does not support stacking of other packages above so

it occupies premium warehouse location and they also have expiration dates. There is

a necessity to be more efficient in warehousing space, stall money, transport costs and

pollutant emissions and that lead to a necessity of optimizing inventory levels.

1.2 Research question and hypothesis

Regarding the problem mentioned above, a question can be asked: “How to optimize the

inventory levels based on the production?” The hypothesis to prove is that the inventory

levels can be optimized with a data driven system that analyses the available data from

stock, supply and demand, and learns from the data to provide optimizations.

1.3 Proposed solution

The proposed solution consists of a data-driven system that can collect, clean, prepare

and integrate data from multiple sources, learn from historical data and suggest opti-

mizations.

As a primary objective we intend to minimize situations of overstock by reducing order

quantities and number of trucks.

To that end I will utilize historical data from stock levels to analyse the magnitude of the

problem and where are opportunities for improvements. Then I will use data from the

production line to predict the usage of each material to calculate the optimal number of

inventory is at a given moment.

6



1.4. METHODOLOGY

We intended to implement a multi-layer architecture, which for this use-case wont nec-

essary be a “big data” architecture but will be built with a future integration in a cloud

computing system like apache spark in mind for the purpose of scalability. The multiple

layers will be described in detail throughout this dissertation. The said layers are the

following:

1. ETL (extract, transform, load) – To implement a data driven system its necessary to

extract the data from its source, transform it into a clean structured format to load

into said system. This layer consists of multiple operations of loading, cleaning,

reshaping, resampling and normalization to get the data from its source into our

machine learning (ML) layer or directly to the processing or presentation layer.

2. Storage layer – this layer consists of a database with the clean, structured and inte-

grated data necessary to save historical data.

3. ML layer – This layer consists of a machine learning model that receives the already

prepared data and learns patterns, behaviours, and trends without being explicitly

programmed from that data to forecast the future states of that said data. Those

forecasted values are then forward to the next layer.

4. Processing – This layer consults the available data, including the forecasts provided

by the ML layer, and calculates the suggested values of each target.

5. Presentation – This layer consists of ways to present data and insights to the plan-

ners, by the creation of graphs and data tables in intuitive ways. With this addition

decision makers are equipped with data and insights to make the best possible

decision.

This architecture was chosen because the main problem encountered was the absence of a

“Big Picture” of the data available, because of the existence of data silos and lack of data

validation. This way our ETL layer can eliminate the data silos by integrating the data and

cleaning and structuring the data in the process. The machine learning layer can be used

to learn from data and output insights, in this use case it will learn from historical data

to forecast the next 5 days of consumption of car batteries by the production line. The

processing is necessary to interpret the output of the machine learning layer, and finally

the presentation layer intends to solve the absence of the “Big Picture” by presenting the

data from all clusters in the same platform.

1.4 Methodology

This dissertation will follow a CRISP-DM (Cross-industry standard process for data min-

ing) reference model. Within this model the life cycle of a data mining project is broken

down in six phases which are shown in figure 1.6. [14]
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Figure 1.6: Phases of CRISP-DM model

1. Business understanding – Vital to know what to look for and defining objectives

2. Data understanding – Considerations on how to integrate data from multiple sources.

3. Data preparation – Covers all activities to construct the final dataset

4. Modelling – Decide and apply the modelling techniques.

5. Evaluating – Evaluate the results obtained in the previous step and decide new

objectives and future tasks.

6. Deployment – Define a strategy to implement the results validated on step 5.

This methodology does not have a strict sequence of the phases and moving back and

forth between phases is always required in order to improve the outcome iteratively.

To acquire the necessary knowledge about the business, logistics process and general

work of the factory an internship for the duration of the work was seen by both parts as a

positive measure and the most fruitful way to proceed.
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1.5 BOOST 4.0 Contributions

As previously stated, this work is integrated in the VWAE pilot of the BOOST 4.0 Euro-

pean project. This section will provide a description of the pilot and its objectives as well

as description of the different phases of the pilot and the contributions of this thesis to

the project.

Boost 4.0 is seeking to improve the competitiveness of Industry 4.0 and to guide the

European manufacturing industry in the introduction of Big Data in the factory, along

with the necessary tools to obtain the maximum benefit of Big Data. In respect to global

standards, Boost 4.0 is committed to the international standardization of European Indus-

trial Data Space data models and open interfaces aligned with the European Reference

Architectural Model Industry 4.0 (RAMI 4.0).

The standardization of industry 4.0 compliant systems or smart manufacturing systems

include many aspects [15]. Future smart manufacturing infrastructures must enable the

exploitation of new opportunities. Even today, people are surrounded by interconnected

digital environments continuously generating more synergies with connected devices and

software. Such an evolution happens also in the manufacturing domain as in Volkswa-

gen. Future Smart Manufacturing infrastructures are confronted with the digitalisation

and virtualisation of (physical) objects enhanced with sensors, processors, memory and

communication devices, able to communicate coactively and to exchange information

independently through a reactive, predictive, social, self-aware and/or autonomous be-

haviour [16] [17]. A used term for such intelligent physical objects is Cyber-Physical

System (CPS) which are communicating in (Industrial) Internet of Things ((I)IoT) net-

works.

To exploit new opportunities, specific requirements as real-time, security or safety have

to be considered. Smart Manufacturing infrastructures have to be based on network

technologies which enable a secure (encryption, authentication, robustness, safety), verti-

cal and horizontal cross-domain and cross-layer communication between stationary and

mobile objects (as virtual objects, sensors, actors, devices, things or systems). Network

technologies must comply with specific requirements related to e.g. real-time, safety,

security, data amounts, wired or wireless, passive, or active, etc.[18]. Lower level fields

(process control or real-time statistics) require time frame abilities of seconds or even mil-

liseconds for response, whereas higher levels (production planning or accounting) only

require time frames of weeks or months[18]. Architectures, as the RAMI 4.0 in figure 1.7,

in general, are describing the ordering of components/modules and their interaction and

should provide a unified structure and wording for used terms. An architecture should

include a logical, a development, a process and a validation view, and should provide

scenarios for a validation as proposed by Philippe Kruchten in his 4+1 architectural view

model [19]. A smart manufacturing architecture should also provide a unified structure

and wording covering mandatory aspects in smart manufacturing as product, system

9
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or order life cycles, value streams, information flows, or hierarchical layers. Such archi-

tectures are currently under development. (Physical) reachable objects inside a smart

manufacturing network (e.g. digitalised and virtualised field level devices, systems, ma-

terial, integrated humans, virtual concepts (e.g. of products in the design phase), etc.),

have to fulfil a range of requirements. Objects should communicate using a unified com-

munication protocol, at least at the application level, and should be based on a unified

semantic to enable a mutual identifiability and understanding. The object itself should

provide its own features as a service (e.g. state information or functionalities) and should

be able to provide its own description next to extended information as manuals, specifica-

tions or wear information. All these have to be kept next to further requirements related

to security, safety or quality of service [20] [21]. Finally, various applications that use

Figure 1.7: RAMI 4.0 Reference Architecture

services of deployed objects to realise e.g. control systems, systems of systems through

service orchestration, or - as focused in in this work - Big Data analysis applications can

be implemented. Standards can be classified according to what role they play in the

system architecture. At this stage in the Boost 4.0 project we have the RAMI 4.0 (fig 1.7).

In figure 1.8 we have the Boost 4.0 architecture. Here we can see Boost 4.0 horizontal

layers, visualization, data analytics, data processing, data management and external Data

sources/Infrastructure as well as the Vertical layers, development, communications and

connectivity, data sharing platforms and privacy/security. This dissertation will con-

tribute mainly on the visualization, data analytics, data processing, data management

and external data sources/Infrastructure layers.

This pilot is structured in four different phases as we can see on figure 1.9.

Phase 1 - The initial version of the pilot’s implementation mainly comprised the overall

test of the closeness of the simulation with the reality of the logistics operations at VWAE.

10
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Figure 1.8: Boost 4.0 Architecture

Figure 1.9: Pilot structure and phases

This phase was divided into several iterations in order to have the best possible fitting

between what is being simulated in Visual Components “Digital-Twin” and the reality in

terms of logistics processes, in accordance to the main business scenarios for this pilot.

The tasks of this phase are represented in figure 1.10 and this dissertation contributed to

the data cleaning and data transformation tasks.

Phase 2 - Real-Time Scenario. In this phase, real-time data is fed into the simulation

in order to confirm that the simulation clearly depicts the real-world processes, to val-

idate if the real-world processes can be optimized and also to check the as-is situation

11
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Figure 1.10: phase 1

when tweaks in the actual process are performed in the simulation. The data is fed to

the simulation environment through a Publish-Subscribe mechanism, as is the case of

the OPC-UA standard or the FIWARE ORION Context Broker, meaning that when a set

of data is published into the service, the simulation environment will get it through its

subscription to the Pub-sub service. On figure 1.11 we have the tasks of this phase, this

dissertation contributed to the Big data aggregation.

Phase 3 Prediction. This phase is characterized by the use of Data Mining and Machine

Figure 1.11: phase 2

Learning algorithms, both for prediction of future data values and on the analysis of data

retrieved from the simulation environment. The first process will be to predict future

data depending on specific tweaks to the processes, whether they are made directly on

the physical dimension of the simulation (e.g. placing the sequencing area in a different

place, changing an human operator for an AGV or robot, etc.) or on the data per se (e.g.

increase the number of jobs in the Point-of-fit, increase the time intervals between truck

arrivals, etc.). The predicted data would then be fed into the simulation environment, in

order to check the impact of the tweaks in the logistics operation, i.e. if the whole process

would still correspond to the necessary production requirements or not. In the case the

process does not meet the necessary requirements, then solutions for the encountered

issues must be found. The tasks of this phase are in figure 1.12 and this dissertation

contributed to the predictive algorithms task.

Phase 4 Future Digital Twin. This phase comprises the final version of the digital twin,

in which the future operations of the logistics area at VWAE will be tested prior to real

implementations. This process of digital twin testing will provide a solid ground to create

new processes, optimize existing ones and test significant changes in the overall logistics

operation without the need of performing real-world pilots, saving money, time and hu-

man resources that would otherwise be needed to perform such piloting activities. This is

12
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Figure 1.12: phase 3

crucial to VWAE since, up to now, the only way to perform testing activities is to couple

them into the everyday operation, which brings serious problems in terms of execution

times, resource usage and return of investment. Furthermore, when piloting some opti-

mization of processes or the assessment of the use of new technologies on the logistics

operations does not meet the required expectations, all of the above problems are even

more critical, since the effort spent in the tests, regarding money, time and resources does

not contribute to a substantial improvement of the operation. The tasks of this phase are

in figure 1.13 and this dissertation contributed to the analytics task.

Figure 1.13: phase 4

1.6 Thesis outline

This dissertation is divided in 6 chapters. The first chapter is the introduction one, it

frames and describes the problem at study and presents a conceptualization and descrip-

tion of the proposed solution. Literature review and study of previous solutions and

research on similar problems and key technologies forms the next chapter. After this a

chapter with the description of the data available and used throughout the dissertation.

The architecture of the system is the next chapter and it is divided into sub-chapters for

each step of the process, followed by a chapter presenting the results obtained. Finally,

a chapter with conclusions drawn from the work and a description of the work that can

derive from the one present here.
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2
State of the Art

This chapter contains a review of the concepts and technologies addressed in this disser-

tation.

2.1 Machine Learning

Machine learning (ML) is the study of algorithms and statistical models that computers

use to perform specific tasks without using explicit instructions, relying on patterns and

inference instead. It focuses on the development of computer programs that access data

and use it to learn (training data). This technology is seen as a subset of artificial intelli-

gence.

There are multiple categories of machine learning and each one of these differ in approach,

type of data input and output, and the type of problem that they are intended to solve.

We can separate machine learning in 3 main categories:

• Supervised Learning – Builds a mathematical model of a set of data that contains

both the inputs and the desired outputs. To every output there is one or multiple

inputs. Through iterative optimization of an objective function, the system can

provide outputs to any new inputs after enough training. Supervised learning algo-

rithms include classification, for cases where the outputs are restricted to a limited

set of values, and regression for cases when the outputs can have any numerical

value.

• Unsupervised learning – Is used when the data provided is neither classified nor

labelled, and instead of figuring out the right output identifies common features

within the data and can infer functions to describe hidden structure on data.
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• Reinforcement learning – Ought to take actions in an environment to maximize a

notion of cumulative reward. Trial and error search and delayed reward are the

most relevant characteristics of reinforcement learning. It allows software agents

to autonomously determine the ideal behaviour in each scenario. These algorithm’s

do not assume the knowledge of an exact mathematical model and are used when

exact models are infeasible.

Figure 2.1: Structuring of machine learning techniques and algorithms [6]

Figure 2.1 shows the structuring of machine learning techniques and algorithms, and that

in all categories there is a big range of different algorithms, each one with its advantages

and disadvantages.

Machine learning has applications in multiple areas, approaches for predicting future

inbound logistic processes already exist[22], forecasting of supply chains showed im-

provements and increased adaptability with the use of machine learning algorithms[23],

in healthcare machine learning algorithms proved successful in predicting early colorec-

tal cancer metastasis using digital slide images[24].

In industry, supervised machine learning techniques are mostly applied due to the data-

rich but knowledge-sparse nature of the problems [25]. The general process contains

several steps handling the data and setting up the training and test dataset by the teacher,

hence supervised [26].

In 2017 an article[27] implemented a machine learning based system to respond to a

problem of optimal order placements in electronic equity markets and achieved substan-

tial reductions of transactions costs.

Multiple machine layer techniques are being applied with success on scheduling prob-

lems like this article [28] that proposes a framework to optimize scheduling of processes

in order to reduce power consumption in data-centre’s, they utilize machine learning

techniques to deal with uncertain information and use models learned from previous sys-

tem behaviours in order to predict power consumption levels, CPU (Central Processing

Unit) loads, and SLA(service-level agreement) timings, and improve scheduling decisions.
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Machine learning algorithms are becoming more and more useful with the growth of big

data, since it is not possible or practical to have programmer’s constantly adapting code

to extract useful information from data. There are multiple examples of cases where the

use of big data techniques aided by machine learning produced valuable results in varied

areas like energy, logistics, agriculture, marketing or even health. A good example are

search engines that use ML algorithms to recommend advertisements related with the

content searched [29].

2.1.1 Predictive techniques

There is a wide range of predictive techniques and mainly two categories, regression tech-

niques and machine learning ones. With regression models the focus lies on establishing

a mathematical equation as a model to represent the interactions between the different

variables in consideration. Depending on the situation there are a wide variety of models

that can be applied while performing predictive analytics.

One of this models is the linear regression model that analyses the relationship between

the response or dependent variable and a set of independent or predictor variables. This

relationship is expressed as an equation that predicts the response variable as a linear

function of the parameters. These parameters are adjusted so that a measure of fit is

optimized. Much of the effort in model fitting is focused on minimizing the size of the

residual, as well as ensuring that it is randomly distributed with respect to the model

predictions. A proposed local linear regression model was applied to short-term traffic

prediction in this paper[30] and the performance of the model was compared with pre-

vious results of nonparametric approaches that are based on local constant regression,

such as the k-nearest neighbour and kernel methods, by using 32-day traffic-speed data

collected on US-290, in Houston, Texas, at 5-min intervals. It was found that the local

linear methods consistently showed better performance than the k-nearest neighbour and

kernel smoothing methods.

Logistic regression is a statistical model that in its basic form uses a logistic function

to model a binary dependent variable, although many more complex extensions exist.

Although it’s a simple model in some cases it can outperform more advanced models.

This study [31] uses Logistic Regression, Moving Average and BPNN (Back-Propagation

Neural Network) methods for sales models designed to predict daily fresh food sales and

found that the correct percentage obtained by the logistic regression to be better than

that obtained by the BPNN and moving average models

Machine learning was already described before and some of its techniques can be used to

conduct predictive analytics.

Neural networks are nonlinear sophisticated modelling techniques that are able to model

complex functions. They can be applied to problems of prediction, classification or con-

trol in a wide spectrum of fields and are used when the exact nature of the relationship

between inputs and output is not known. A key feature of neural networks is that they
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learn the relationship between inputs and output through training.

The multilayer perceptron (MLP) consists of an input and an output layer with one or

more hidden layers of non-linearly-activating nodes or sigmoid nodes. This is determined

by the weight vector and it is necessary to adjust the weights of the network. The back-

propagation employs gradient fall to minimize the squared error between the network

output values and desired values for those outputs. The weights adjusted by an iterative

process of repetitive present of attributes. Small changes in the weight to get the desired

values are done by the process called training the net and is done by the training set

(learning rule).

Support vector machines (SVM) are used to detect and exploit complex patterns in data

by clustering, classifying and ranking the data. They are learning machines that are

used to perform binary classifications and regression estimations. They commonly use

kernel-based methods to apply linear classification techniques to non-linear classifica-

tion problems. There are several types of SVM such as linear, polynomial, sigmoid etc.

Multiple authors written about this. This paper [32] proposes an support vector machine

model to forecast the streamflow values of Swan River near Bigfork and St. Regis River

near Clark Fork of Montana, United States and this model outperformed the other models

tested, the autoregressive moving average model (ARMA) and an artificial neural network

(ANN). Another SVM model was successfully utilized to predict a daily electricity price

forecast on this paper[33].

2.1.2 LSTM

Long short-term memory (LSTM) networks are a type of RNN and were discovered in

1997 by Hochreiter and Schmidhuber and set accuracy records in multiple applications

domains. [34]

LSTM are deep learning systems that avoid the vanishing gradient problem which means

that prevent backpropagated errors from disappearing or overgrowing . LSTM are nor-

mally augmented by recurrent gates called “forget gates”. [35]. So, errors can flow back-

wards through unlimited numbers of virtual layers unfolded in space. LSTM can learn

tasks that require memories of events that happened thousands or even millions of dis-

crete time steps earlier. [36] LSTM differ from other networks because they can work with

long delays between events and mainly because they can handle high and low frequency

events at the same time.

Multiple authors are using LSTM to make predictions to important datasets, a paper [37]

proposed an approach to forecast PM2.5 (Particulate Matter) concentration using LSTM

by exploiting Keras[38], which is a high-level neural networks API written in Python and

capable of running on top of Tensorflow, to build a neural network and run RNN with

LSTM through Tensorflow. The results showed that the proposed approach can effectively

forecast the value of PM2.5.
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Another paper [39] modelled and predicted China stock returns using LSTM. The his-

torical data of China stock market were transformed into 30-days-long sequences with

10 learning features. That LSTM model compared with random prediction method im-

proved the accuracy of stock returns prediction.

LSTM models accept multiple input and output types of data, one example of that is

a paper [40] that introduced an algorithm of text-based LSTM networks for automatic

composition and reported results for generating chord progressions and rock drum tracks.

The experiments show LSTM provides a way to learn the sequence of musical events even

when the data is given as text and the authors plan to examine a more complex network

with the capability of learning interactions within music (instruments, melody/lyrics) for

a more complete automatic composition algorithm.

2.2 Big Data Analytics

With the exponential growth in the volume of data produced, big data is a concept whose

relevance has grown, a tendency with no signs of slowing down in a near future. In

general, big data is used to describe a large amount of structured, semi-structured and

unstructured data created by data sources, which would need too much time and money

to be stored and analysed. Big data can also be defined by the four characteristics, also

named “the four V’s”: [3]

• Volume, for the scale of the data produced, which makes it difficult to be processed

by regular data processing techniques.

• Velocity, by the pace at which the data is produced, demanding a much higher

processing capacity.

• Variety, in terms of content, format and size, which does not enable a standard

method for processing all the data.

• Value of the hidden information that can be collect by analysing such a large amount

of data.

Data Analytics may correspond to the application of tools and techniques to extract in-

sights and knowledge from data, by analysing it through any of Statistics, Data Mining

and Machine Learning techniques. Although statistical analytics is supported by well-

known statistical techniques, which are more easily deployed on a Big Data context, in

the case of Data Mining and Machine Learning, the passage to a Big Data environment is

not a trivial task, since it comprises the reconfiguration of algorithms to be deployed in

Big Data execution engines.

In typical data mining systems, the mining procedures require computational intensive

computing units for data analysis and comparisons. A computing platform is, therefore,

needed to have efficient access to, at least, two types of resources: data and computing
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processors.

For Big Data mining, because data scale is far beyond the capacity that a single personal

computer can handle, a typical Big Data processing framework will rely on cluster com-

puters with a high-performance computing platform. The role of the software component

is to make sure that a single data mining task, such as finding the best match of a query

from a database with billions of records, is split into many small tasks each of which is

running on one or multiple computing nodes [41].

Big Data Analytics refers to the implementation of analytic tools and technologies within

the scope of Big Data [9]. Hence, Big Data Analytics may be described by two specific

concepts, Big Data + Analytics, and the interactions between technologies supporting

both concepts.

So, why merge these concepts [42]? First, Big Data provides gigantic statistical samples,

which enhance analytic tool results. In fact, the general rule is that the larger the data

sample, the more accurate are the statistics and other products of the analysis. Second,

analytic tools and databases can now handle big data, and can also execute big queries

and parse tables in record time. Moreover, due to a precipitous drop in the cost of data

storage and processing bandwidth, the economics of analytics is now more embraceable

than ever.

The manufacturing sector is also implementing Big Data Analytics, this paper [43] pro-

poses a big data driven analytical framework to reduce the energy consumption and

emission for energy-intensive manufacturing industries. Then an application scenario

of ball mills in a pulp workshop of a partner company is presented to demonstrate the

proposed framework. The results show that the energy consumption and energy costs

are reduced by 3% and 4% respectively.

According to [44] the semiconductor manufacturing industry has been taking advantage

of the big data and analytics evolution by improving existing capabilities such as fault

detection, and supporting new capabilities such as predictive maintenance. For most of

these capabilities, data quality is the most important big data factor in delivering high

quality solutions and incorporating subject matter expertise in analytics is often required

for realizing effective on-line manufacturing solutions. In the future, an improved big

data environment incorporating smart manufacturing concepts such as digital twin will

further enable analytics; however, it is anticipated that the need for incorporating subject

matter expertise in solution design will remain.

Internet of Things generated data is characterized by its continuous generation, large

amount, and unstructured format. The existing relational database technologies are in-

adequate to handle such IoT generated data because of the limited processing speed and

the significant storage-expansion cost, to counter that a paper [45] proposes a sensor-

integrated radio frequency identification (RFID) data repository-implementation model

using MongoDB and show that the proposed design strategy, which is based on horizontal

data partitioning and a compound shard key, is effective and efficient for the IoT gener-

ated RFID/sensor big data.
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In this paper[46], an overall architecture of big data-based analytics for product lifecy-

cle (BDA-PL) was proposed. It integrated big data analytics and service-driven patterns

that helped to overcome the lack of complete data and valuable knowledge. Under the

architecture, the availability and accessibility of data and knowledge related to the prod-

uct were achieved. Focusing on manufacturing and maintenance process of the product

lifecycle, and the key technologies were developed to implement the big data analytics.

The presented architecture was demonstrated by an application scenario, and the results

showed that the proposed architecture benefited customers, manufacturers, environment

and even all stages of product lifecycle management, and effectively promoted the imple-

mentation of cleaner production.

Big Data in supply chain problems makes it possible to analyse the data at a more ad-

vanced level than traditional tools, allowing the processing and combining of data col-

lected from several systems and databases in order to provide a clear picture of the situa-

tion. It can provide information on potential interference with the supply chain through

the collection and evaluation of data, it is possible not only to protect but also improve

the efficiency of the supply chain. This way, interruptions on production are avoided and

operational efficiency is increased. Big Data enables the optimization of logistic processes

while making the supply chain less prone to failures [47].

2.2.1 Existing Big Data Technologies

There are several surveys, starting from early 2000’s up to today, regarding Big Data

Analytics. These surveys often describe the same Big Data technologies, which have been

evolving throughout the years, coupled with Analytics techniques. The following para-

graphs present the most prevalent technologies and tools on all the surveys[42] [48] [49]

[50].

Regarding execution engines, the following are the most referred to in literature. Apache

Hadoop software library is a framework that allows for the distributed processing of large

data sets across clusters of computers using simple programming models. It is designed

to scale up from single servers to thousands of machines, each offering local computation

and storage. Rather than rely on hardware to deliver high-availability, the library itself

is designed to detect and handle failures at the application layer, so delivering a highly-

available service on top of a cluster of computers, each of which may be prone to failures.

It builds over a data processing paradigm called MapReduce. The MapReduce workflow

looks like this: read data from the cluster, perform an operation, write results to the

cluster, read updated data from the cluster, perform next operation, write next results to

the cluster, etc., Apache Spark is a general-purpose cluster computing engine which is

very fast and reliable [51] that started as a research project at the UC Berkeley AMPLab

in 2009, and was open sourced in early 2010. Many of the ideas behind the system were

presented in various research papers over the years.

Spark offers an abstraction called resilient distributed datasets (RDDs) to support these
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applications efficiently. RDDs can be stored in memory between queries without re-

quiring replication. Instead, they rebuild lost data on failure using lineage: each RDD

remembers how it was built from other datasets (by transformations like map, join or

groupBy) to rebuild itself. RDDs allow Spark to outperform existing models by up to

100x in multi-pass analytics. Spark showed that RDDs can support a wide variety of

iterative algorithms, as well as interactive data mining and a highly efficient SQL engine

called Spark SQL, which enables queries in SQL to be executed on NoSQL environments.

While MapReduce operates in steps, Spark operates on the whole data set in one fell

swoop. Spark completes the full data analytics operations in-memory and in near real-

time and Spark also works for both batch offline data processing and online stream pro-

cessing, through its real-time counterpart: Spark Streaming.

Apache Spark also has a Machine Learning library called MLlib [52], which include:

• Classification: logistic regression, naive Bayes;

• Regression: generalized linear regression, survival regression;

• Decision trees, random forests, and gradient-boosted trees;

• Recommendation: alternating least squares (ALS);

• Clustering: K-means, Gaussian mixtures (GMMs);

• Topic modelling: latent Dirichlet allocation (LDA);

• Frequent item sets, association rules, and sequential pattern mining;

Beyond Big Data execution engines, storage and query systems for Big Data also had

an enormous evolution in the past few years. MongoDb[53], Apache Cassandra[54] two

different storage engines which do not rely on traditional RDBMS (Relational Database

Management System) and SQL technologies. Instead, each use a specific type of data

storage mechanism. Mongo is based on a document structure, relying on JSON(JavaScript

Object Notation) formatted documents to store data. Cassandra is also supported by a

file storage system, while HBase maintains the traditional tabular form, used in RDBMS

systems. Because most companies are used to using SQL query tools in order to perform

complex queries on their systems, several abstractions to NoSQL technologies were added,

in order to provide SQL query functionality to these systems.

2.3 Inventory Management

This section describes relevant literature to frame the phenomenon’s in focus on this

dissertation.

Inventory management is a challenging problem in supply chain management and inven-

tory is the supply of raw materials that an organization maintains to meet its operational
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needs. Inventory is defined as a stock of goods that is maintained by a business in antic-

ipation of some future demand. The quantity to which inventory must fall in order to

signal that an order must be placed to replenish an item[55].

Capacity and inventory management are key to operations management, as they concern

the planning and control of the supply or processing side of matching supply and de-

mand, and because of that they are very a researched area[56].

As this is an old problem multiple authors have written about it.

Dolgui and Prodhon [57] have focused on the development of MRP software for an un-

certain environment and have shown that various techniques such as safety stock, safety

lead time, and lot-sizing rules can be used to control the supply variability in order to

lead the better anticipation of uncertainties.

Multiple authors have showed that safety lead time can be used to work around sup-

ply uncertainties like late deliveries[58]. Axsäter in 2006 compared two types of lead

times. The comparison showed that inventory levels vary less in case of independent lead

times than dependent ones[59]. There is tremendous need for scalable supply chain opti-

mization algorithms to respond to dynamic information, that is, to perform data-driven

re-optimization in a timely manner[56]. The classical systems work but they usually as-

sumed stationary demand distributions, but when the demand environment is non static

or unknown, optimal policy is often difficult to identify and even when one can identify

some solutions those are likely to require a lot of computational power. To tackle these

complex optimization problems on an industrial scale, machine learning techniques can

be used to generate quick heuristics. Machine learning can provide general purpose

algorithms that can readily be applied to multiple different problems without years of

specialized research to tailor the solution approach although the generic nature of these

algorithms can have worse performances than the ones specifically designed for the prob-

lem at hand[60].

According to this paper [61] determining the adequate stock levels balances the over-

stocking costs, these include costs for holding the safety stocks, for occupying additional

storage space and transportation and the Costs of lost sales or production. To deal with

this costs the use of data mining techniques ensures that each inventory point (internal

warehouse, work-in-process, distribution center, retail store) has the optimal stock levels.

Commonly, managers have relied on a combination of ERP (Enterprise Resource Plan-

ning), supply chain, and other specialized software packages, as well as their intuition to

forecast inventory. However, in today’s high uncertain environment and large quantities

of disparate data demands new approaches for forecasting inventory across the entire

chain. Data mining tools can be used to accurately forecast products to where they are

needed.

This paper [62] proposes a hybrid deep learning models for inventory forecasting. Ac-

cording to the highly nonlinear and non-stationary characteristics of inventory data, the

models employ Long Short-Term Memory (LSTM) to capture long temporal dependencies

and Convolutional Neural Network (CNN) to learn the local trend features and although
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building CNN-LSTM network architecture and tuning can be challenging, experimental

results indicate that the evolved CNN-LSTM models are capable of dealing with complex

nonlinear inventory forecasting problem.

This paper [63] from 2019, proposed an inventory forecasting solution based on time

series data mining techniques applied to transactional data of medical consumptions

because one of the factors that often result in an unforeseen shortage or expiry of medica-

tion is the absence of, or continued use of ineffective, inventory forecasting mechanisms.

Unforeseen shortage of perhaps lifesaving medication potentially translates to a loss of

lives, while overstocking can affect both medical budgeting as well as healthcare provi-

sion. The results from this work evidently suggest that the use of data mining techniques

could prove a feasible solution to a prevalent challenge in medical inventory forecasting

process.

Some authors argue that human decision making, augmented by data-driven decision

models suggesting real-time actions, will remain the desired approach for complex op-

erations as algorithms rarely can anticipate all possibilities economically[56]. So, it is

desirable that the human be the ultimate decision maker as experience, common sense,

intuition, and insights derived from structured models can rarely be replaced by a fully

automated solution. Intervention is desired, if not necessary, when we detect stupid so-

lutions due to input or algorithm errors. Analysing their output can generate insight

into which variables are significant and which can be ignored and can help enriching

analytical models to develop deeper insights, as illustrated by Gijsbrechts [60].

A paper in 2008 [64] develop an enhanced fuzzy neural network (EFNN) based decision

support system for managing automobile spares inventory in a central warehouse. And

in that system, the EFNN is utilized for forecasting the demand for spare parts. That

system when evaluated with real world data outperformed five other models.
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3
Intralogistics Data Analysis

This chapter will include a description and analysis of the whole range of intralogistics

data generated at the VWAE automotive factory.

The objective of this thesis and the BOOST 4.0 project is to contribute to the optimizations

of intralogistics processes by applying emerging technologies and take advantage of the

data available. To ensure this a data assessment to shed light on how to integrate data in

order to achieve a “big picture” of the intralogistics process.

One of the first tasks I set out to accomplish was an overview of the data available. A

description of the data available by each cluster.

Note that some of the data is not described in detail to prevent any issues of data pro-

tection and confidentiality. For the same reasons some data is described but the sample

presented contains less data than the described.

3.1 External Transports Data

The external material transports in this context means transports that start outside the

factory. Most of the incoming parts arrive by truck, the available data consisted of raw

excel files with tabular data from each truck arriving at the factory.

These files contained timestamps of multiple events for each truck, like arriving time,

start and end of unloading, information about the material unloaded like quantity and

description, licence plate of the truck and the unloading position as well as transport

identification number and material order number. The licence plate, transport identifi-

cation number and material order number fields are important to the data integration

process because these fields represent the same information on the receiving cluster, thus

enabling a connection to be made.

This dataset contained a lot of repeated data and a substantial amount of errors and some

25



CHAPTER 3. INTRALOGISTICS DATA ANALYSIS

preparation was made to obtain clean data.

In table 3.1 there is a small data sample.

nº guia transporte ID Chegada fabrica inicio descarga fim descarga saida fabrica local de descarga part number
000180576 219779693 03.01.19 10:03 03/01/2019 10:54:00 03/01/2019 11:30:00 03/01/2019 12:23:00 LOZ_5_KLT 6R0915105B
016648930 219812549 04.01.19 01:00 04/01/2019 01:35:00 04/01/2019 01:50:00 04/01/2019 01:51:00 LOZ10_GLT 1S0915105A
016648931 219812549 04.01.19 01:00 04/01/2019 01:35:00 04/01/2019 01:50:00 04/01/2019 01:51:00 LOZ10_GLT 5TA915105B
016648932 219812549 04.01.19 01:00 04/01/2019 01:35:00 04/01/2019 01:50:00 04/01/2019 01:51:00 LOZ10_GLT 7P0915105
016648927 219809991 04.01.19 01:36 04/01/2019 02:04:00 04/01/2019 02:17:00 04/01/2019 02:18:00 LOZ10_GLT 1S0915105A
016648928 219809991 04.01.19 01:36 04/01/2019 02:04:00 04/01/2019 02:17:00 04/01/2019 02:18:00 LOZ10_GLT 7P0915105
016648929 219809991 04.01.19 01:36 04/01/2019 02:04:00 04/01/2019 02:17:00 04/01/2019 02:18:00 LOZ10_GLT 5TA915105B
000180616 219843212 04.01.19 05:28 04/01/2019 05:54:00 04/01/2019 06:34:00 04/01/2019 06:35:00 LOZ_5_KLT 6R0915105B
016649484 219891419 07.01.19 07:05 07/01/2019 08:04:00 07/01/2019 08:37:00 07/01/2019 10:07:00 LOZ_5_KLT 7P0915105A

Table 3.1: External transport data sample

3.2 Receiving Data

Regarding the receiving cluster the data available consisted on excel files with records of

material orders. The files contained entries for each unit load ordered and had the follow-

ing information, material order creation date, truck license plate, truck arrival data, part

identification number, supplier information and the warehouse position for the unit load.

In this case the material order number allows connection to the external transport data

and the warehouse position for the unit load allows connection to the warehousing data.

On table 3.2 we can see a data sample of this data.

Area Nr. Fornec Nr Guia Posição Dt Guia Dt Entrada Peça Gr Arm Embalagem
FCC1 0001551600 000180576 MS05A04A03 2018-12-19 04/01/2019 00:30 6R0915105B T2 DB0011
FCC1 0001551600 000180576 MS05A08A03 2018-12-19 04/01/2019 00:30 6R0915105B T2 DB0011
FCC1 0001551600 000180576 MS05A09A01 2018-12-19 04/01/2019 00:30 6R0915105B T2 DB0011
FCC1 0002522100 016648927 INSPECAO 2018-12-27 04/01/2019 03:35 1S0915105A T2 DB0011
FCC1 0002522100 016648927 INSPECAO 2018-12-27 04/01/2019 03:35 1S0915105A T2 DB0011
FCC1 0002522100 016648927 MS05B22A02 2018-12-27 04/01/2019 03:36 1S0915105A T2 DB0011
FCC1 0002522100 016648927 MS05B22A03 2018-12-27 04/01/2019 03:36 1S0915105A T2 DB0011
FCC1 0002522100 016648927 MS05B27A03 2018-12-27 04/01/2019 03:36 1S0915105A T2 DB0011
FCC1 0002522100 016648927 MS10B25A02 2018-12-27 04/01/2019 03:36 1S0915105A T2 DB0011

Table 3.2: Receiving data sample

3.3 Warehousing Data

The warehousing data available consisted of a daily report that included the quantity

and identification of the material stored in each occupied position of the VWAE internal

warehouses.

This report is generated with the arrival of material from the receiving cluster and the

transports of material leaving the warehouse, not a real time picture of the state of the

warehouse, this can be a problem because it can lead to data errors like for example if

during the warehousing process an operator stores a container in a wrong position the

data will show the container at the correct position.
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Table 3.3 is a data sample of the described data.

Area NrReferencia Zona Loc. Peça Fornecedor QStatus GrArm Embalagem Nr. Guia Dt Guia Ultimo Mov. Quantid
43B1 04314028017754 PSO BN05A14D01 7M3810630A 00156324 00X B9 0015SCH 007011214 01/12/2014 13/07/2017 116
43B1 04316031877318 U20 BN06B04E01 7N0864633A 00153479 00X K3 0006PAL 026301258 01/09/2016 13/03/2018 500
43B1 04317035155166 PSO BN05A14B02 1K8827209A 00057588 280 B8 111902 000397189 03/03/2017 23/02/2018 28
43B1 04317036301736 PSO BN05A14B03 1K8827210A 00057588 280 B8 111902 000405075 05/07/2017 23/02/2018 12
43B1 04317036919162 V05 BN03B03C01 1K0809495 00016954 280 B8 111902 000379297 14/09/2017 20/10/2017 500
43B1 04317036938926 INK MAT-NOK. 1K8864629B 00051288 000 68 006280 002161428 04/09/2017 02/11/2017 200
43B1 04317036950013 ING MAT-NOK 1K0813146 00071142 280 B8 111950 040125786 05/09/2017 13/02/2018 129
43B1 04317036968762 V05 BN03B02C02 1K0809495 00016954 280 B8 111902 000377602 04/09/2017 20/10/2017 361
43B1 04317036978923 BKL BN99011A05 7N0864623A 00153479 00X K2 0001SCH 060705981 08/09/2017 25/10/2017 1080
43B1 04317036978927 BKL BN99011A05 7N0864623A 00153479 00X K2 0001SCH 060705981 08/09/2017 25/10/2017 1080

Table 3.3: Stock data sample

3.4 Transport to Sequencing

When it comes to internal transports there is a system responsible for the movements of

tow tugs and forklifts. This system manages all internal transports apart from AGV’s, and

stores the information regarding each internal transportation, creating a huge amount of

data every day.

This data is very detailed and contains a description of each movement made, however

the size of this data was overwhelming for the traditional tools for data analysis used

like excel, because in a single day hundreds of thousands of records can be generated

and weigh over 30 megabyte, that led to this data being left unexplored by the VWAE

planners because they only have traditional tools like excel.

The first step made was to isolate the entries regarding transport of the car batteries to

compare with the data from the other clusters and with the shop floor situation to un-

derstand the meaning of the data. Then a data validation step was made with specialists

on these databases from the VWAE in order to understand the real meaning of the data,

situations like sensor errors, or impossible values can be quickly detected and explained

by specialists in the logistics process, this work with specialists was made for each data

source but the complexity of this data led to this data being the focus of our meetings.

After this work with the specialists I advanced to clean and prepare data for all existent

car components.

This data was connected with the warehouse and sequencing data using the partnumber

and warehouse position fields.

ITLS-Auftrags-Nr. Sachnummer Karte DtHrMov_PT Ereignisschlüssel Verbindername Subsystem Menge Lagerplatz
483737 3Q0813116B 08/01/2020 23:02:59 subsystem_started BODY_P1E1->BODY_P1 SLS_BODY 20 B-MAKE
483737 3Q0813116B 08/01/2020 23:04:21 subsystem_finished BODY_P1E1->BODY_P1 SLS_BODY 20 B-MAKE
565637 BUNDLE-R-DE 08/01/2020 23:04:40 subsystem_started POT-KLT->BHF-KLT-MF SLS_ASSY 28
565637 BUNDLE-R-DE 08/01/2020 23:04:42 subsystem_finished POT-KLT->BHF-KLT-MF SLS_ASSY 28
483743 2GA821105A 08/01/2020 23:04:59 subsystem_started BODY_P1E1->BODY_P1 SLS_BODY 26 B-MAKE
483743 2GA821105A 08/01/2020 23:05:17 subsystem_finished BODY_P1E1->BODY_P1 SLS_BODY 26 B-MAKE
483720 2GA809642 08/01/2020 23:05:22 subsystem_started PAL1_A2_LPL->PAL1_EXPED.B2 SLS_PAL1 60 GESTAMP-01
483720 2GA809642 08/01/2020 23:05:28 subsystem_finished PAL1_A2_LPL->PAL1_EXPED.B2 SLS_PAL1 60 GESTAMP-01
565637 BUNDLE-R-DE 08/01/2020 23:05:29 subsystem_started BHF-KLT-MF->VBHF-KLT-DE ZLS-KLT-MF 28
43B1 04317036978927 BKL BN99011A05 7N0864623A 00153479 00X K2

Table 3.4: Internal transport data sample
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3.5 Sequencing Data

The Sequencing data available consisted of the logs from the scanners used by the se-

quencing operators. One issue was that data was only available for consultation for short

periods of time (15 days) and was not being stored. A few reasons explained why this

data was not being stored, the data had a lot of noise, the logs available had multiple of

data repeated, and multiple columns that had no value, and that made the data heavy.

The process of accessing these logs was also a time-consuming task.

The first solution for our use case was the manual process of accessing the data for the

car batteries parts and storing the data locally. This served the short-term goals but failed

the requirements of scalability. For a more robust solution a Python script was created to

access and download the data for the batteries case automatically using python libraries

for web scrapping beautiful soup and selenium.

This script also contains operations of data cleaning, merging and storage autonomously.

To a viable scale up for all parts root changes on this database and reporting system were

necessary and suggested to the “owners” of the system within VWAE. These suggestions

consisted on the removal of some redundant data and the inclusion of some key fields

in the data and were well received and included in an update patch of the sequencing

data system, now sequencing data for every car component is already being gathered and

prepared automatically.

Table 3.5 is a data sample of this data.

DATE VALUE1 VALUE2 VALUE3
2019-03-19 23:59:58:1167009 Info PICK Put Position 3 OK (Expected 3)
2019-03-19 23:59:58:1167009 Info PICK Put OK
2019-03-19 23:59:58:1011008 Bluetooth PICK 3
2019-03-19 23:59:58:1011008 Info PICK Verify Put
2019-03-19 23:59:51:9558903 Info PICK Pick OK
2019-03-19 23:59:51:9402903 Bluetooth PICK PN3Q0825236D
2019-03-19 23:59:51:9402903 Info PICK Verify Pick PN3Q0825236D(Expected 3Q0825236D)
2019-03-19 23:59:51:9402903 Info PICK Verify if BC contains value(s) 3Q0825236D
2019-03-19 23:59:47:1990823 Info PICK Background Color WHITE

Table 3.5: Sequencing data sample

3.6 Transport to POF

Regarding the transport from the sequencing areas to the point of application is made

either by AGV’s or again tow trucks. AGV’s have their data internal data (logs and sensor)

stored in different databases depending on its manufacturer.

The data from the processes with tow tugs was already described as the process is the

same from transports from the warehouse to the sequencing area.

For our use-case the car batteries were transported from the sequencing area to the point

of fit by an AGV. However, this AGV belongs to one of the oldest generations of AGV’s
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present in VWAE and has no type of connection to any database. Regarding this trans-

portation there was no direct data available.

To counter this issue, we prepared a raspberry pi with movement and position sensors

and attached it to the AGV for some basic data gathering about the AGV behaviour and

workload.

This step was also made to ensure data validity and plausibility, by doing it we were able

to compare the transport times measure with the times recorded by the sequencing clus-

ter and by the production line. This data validation is very important for planners, if the

data is correct the KPI’s (Key Performance Indicators) obtained from it can be relied upon.

3.7 POF Data

Point of fit data consist of logs from the production line. Each car as a tag that commu-

nicates with receivers distributed along the production line, this attributes a time stamp.

The files available are the logs from the receivers that contain the information about each

car with a timestamp associated.

From this data I can for example draw a graph of the number of cars produced each day

at VWAE. The first 100 days of 2018 production at VWAE are represented in figure 3.1.

We can see that the normal production is steady around 900 cars a day and there and the

weekends with zero production. Also, a notable stoppage of production in the end of the

month of march is explained by the holidays.

Figure 3.1: Daily production first 100 days of 2018

For the purposes of our use-case, where car batteries are the part selected, we con-

sulted the log files from the receiver placed at the point of application of the batteries on

the car in the production line. This data comes in excel format (.xlsx) and in a tabular
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shape, with 5 columns, one with the timestamp, other with the car identification number,

and the other tree with info about the car and the number of entries is equal to the number

of cars that passed that receiver during the time frame observed.

The totality of the dataset gathered during this study consists of the logs from the receiver

correspondent to the car batteries for the start of 2018 to the end of February 2020, this

dataset will be used to predict the future consumption by the production line of each

type of batterie further on this thesis.

Table 3.6 is a data sample of the POF data.

KNR Sequence Date - T300 FAM BAT FAM AAU FAM MOT FAM GSP Model
5240356 8602 02/01/2018 07:12 J0V E0A D60 G1A 7N2
5140145 8603 02/01/2018 07:13 J0T E0A DQ6 G1D A11
5110392 8604 02/01/2018 07:15 J0V E0A DN4 G1D A11
4930177 8605 02/01/2018 07:16 J0S E0A DS9 G0K A11
5250312 8606 02/01/2018 07:22 J0V E0A D60 G1A 7N2
4930189 8607 02/01/2018 07:24 J0S E0A DS9 G0K A11
4930337 8608 02/01/2018 07:25 J0S E0A DS9 G0K A11
4930015 8609 02/01/2018 07:26 J0S E0A DS9 G0K A11
5250314 8610 02/01/2018 07:29 J0V E0A D60 G1A 7N2

Table 3.6: POF data sample

3.8 Inventory Data Analysis

This section will include a summary of a meeting with the planners responsible for the

car batteries at VWAE and a description of the inventory data.

This meeting was scheduled to understand the biggest challenges found by the planners

through the years understand and their day to day tasks as well as some tasks of data

validation.

The planners started by pointing out the complexity of the logistics involved in a car

factory like VWAE, there are hundreds of suppliers from all over the world, thousands

of different components and not all of them go through the same processes, for example

a component produced in the industrial park next to VWAE is treated differently from a

component produced in Poland. Each planner is responsible for a list of car components

and although data from all clusters for each component exist accessing it is time consum-

ing and requires the utilization of multiple systems and platforms.

One of the questions asked in this meeting was “How long does it take from a order

being placed and the material reaching VWAE?” and the response was that it varies a lot

depending on the component and supplier, and for the specific case of car batteries it is

usually around 4 or 5 days. They also pointed out that material transports always depend

on external and sometimes unpredictable factors such truck drivers’ strike, transports

infrastructures or even weather conditions and when these situations occur, they need to

react quickly to avoid shortages.
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The inventory data was generated with the purpose of analysing the problem in study

is based on the difference between entries of batteries to the warehouse (receiving data)

and the supplying of batteries to the sequencing area (internal transport data), and for

the initial state of the warehouse levels I utilized the warehousing data for the first day

of production in 2018.

This dataset has data of the entire 2018 year and the first 3 months of 2019.

The data consists of a table with 6 columns and 12861 rows, the first column being the

date and hour of the day and the following 5 the number of stored packages for each

battery type.

Since this dataset reflects the magnitude of the problem at hand an analysis was made.

The first step of this was to define what would be an optimal value, car batteries were

selected to this study because each and every car that is produced in VWAE utilizes one

and only one batterie, but there are still multiple batterie types, in this particular case

five of them, each one with a different usage rate by the production line which is called

take rate.

Based on the take rate we create two categories on the batterie types, low runners for

types with have a take rate below 10% and high runners for those above.

Since a stop in production is very expensive that cannot happen because of material

shortage situations and to unsure that management and specialists from the logistics

department at VWAE calculate, based on the importance of the part and on supplier lo-

calization, a security stock for each part, and the inventory levels should never dip below

that level, except on shutdown occasions.

Based on feedback from the planners responsible for these components a security stock

level of two and a half days was considered for all batterie types present.

To establish a baseline of overstock a steady production of 900 cars a day was considered,

so we will consider that at the start of each day, we should have an inventory level of 3.5

days, the production of the day itself plus the security stock level of 2.5 days.

For each batterie type this baseline was obtained by multiplying the daily production by

the take rate and then dividing that number by the number of batteries per container.

This way we obtain the daily consumption in packages for each type of batteries.

As an example, let us consider the 1S0915105A batterie type. ((900 * 0,4383) 54) = 7,3

packages per day but since we only store full packages, we need to ensure 8 packages per

day in this case.

Now all that there is left to do is multiply that value by 3.5 to get our reference value for

this part. Another reference value we considered was of one week of production so again

8*7 = 56 packages.

The table 3.7 will have the results of this exercise for each type.

This values can be compared with the statistical indicators of the inventory levels, such

as mean, standard deviation, maximum, minimum and percentiles of 25, 50, 75 and 90

to perceive the size of the problem.

The first indicator that situations of overstock occur frequently is that the mean value
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Bat Type 7P0915105A 7P0915105 6R0915105B 1S0915105A 5TA915105B
mean 7,73 2,86 15,30 33,25 33,92
std 6,01 1,57 6,49 13,19 11,54
min 1,00 0,00 4,00 5,00 5,00
25% 4,00 2,00 11,00 22,00 25,00
50% 6,00 3,00 15,00 33,00 35,00
75% 8,00 4,00 19,00 43,00 42,00
90% 10,00 5,00 24,00 50,00 50,00
max 33,00 8,00 38,00 75,00 65,00
Take Rate
2018 %

2,52% 3,18% 13,42% 43,83% 37,05%

Units by
package

36,00 48,00 48,00 54,00 48,00

Round up
Units per day

23,00 29,00 121,00 395,00 334,00

Packages per
day

0,64 0,60 2,52 7,31 6,96

Round up
Packages per day

1,00 1,00 3,00 8,00 7,00

3.5 days 3,50 3,50 10,50 28,00 24,50
7 days 7 7 21 56 49

Table 3.7: Inventory analysis VWAE 2018

is bigger than our reference of 3.5 days for all types except for one that happens to be one

of the low runners, and the maximum value is bigger than the 7 days usage for all the

different types.

In the case of the high runners we observe that our 3.5-day reference is always smaller

than the 75th percentile so we can safely say that in at least 25% of the time we are facing

situations of overstock, and still on the case of the high runners two of them have inven-

tory levels superior to 7 days of consumption 10% of the time.

To illustrate this the graphs of the inventory levels for the month of September of 2018

of the high runners 1S0915105A and 5TA915105B are presented in the figures 3.1 and

3.2. In both graphs we have the inventory levels and the reference line is plotted with the

value of the 3.5 days of production as explained before and represented on table 3.1.

Both of these have a great area above the reference lines and some observations can be

made.

When the inventory levels go up in a given instant it means that a truck with new bat-

teries was received at the factory. There are multiple occasions on both of these graphs

where situations of overstock were already happening, and a new batch of material was

unloaded. In 2018 more than 1770 containers corresponding to over 95 thousand bat-

teries distributed in over 100 trucks of the high runner 1S0915105A were unloaded at

VWAE. This goes to show that there is room for improvement that can bring multiple

optimizations on this process alone, like reductions of the number of trucks (Co2 and

money), reduction of inventory space occupied and reduction of stall money. If situa-

tions like these are detected in advance by our system, it can alert inventory management
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specialists and suggest improvements.

Figure 3.2: Inventory levels September 2018 1S0915105A

Figure 3.3: Inventory levels September 2018 5TA915105B
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4
Architecture

This chapter will describe the architecture implemented in the proposed solution to solve

the problem presented before.

The objective is to implement a data-driven system capable of improve efficiency in

the intralogistics processes at VWAE and to that end a layered architecture was chosen

to maintain flexibility and scalability as layers allow to test and work on components

independently of each other, changes to one of the layers do not require changes in others,

the usage of layers helps to control and encapsulate the complexity of large applications

and with a layered approach multiple applications can effortlessly reuse the components.

Since the objective is a data-driven system the first layer is the ETL layer that will gather,

prepare and load all the data available to the storage layer. This layer is then connected to

a machine learning layer or directly to a processing layer that processes the output of the

machine learning layer and connects to our visualization layer that presents the logistics

data in a visual way to planners.

On figure 4.1 we can see the different layers and the flow of data from the collection on

the shop floor to the data visualization layer.

4.1 Extract Transform Load layer

In order to utilize the gathered data in a fruitful way and to apply machine-learning algo-

rithms data needs preparation. This layer is responsible for getting the data gathered and

transform it in a format acceptable by the storage layer and by the machine learning layer.

Each cluster of data has data in different formats and different sources has we observed

in the logistics data analysis chapter of this document, each of those clusters required

different operations of ETL and some of the more important are described in the logistics

data analysis chapter of this document.
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Figure 4.1: Architecture overview

The different sources have different processes to gather data nonetheless all of the differ-

ent data is gathered in excel format. This layer cleans and prepares the data using python

scripts to then loads it to the storage layer with a python connection.

Our machine learning layer needs data of the production of batteries dataset in a specific

format to predict the future production cars with that batterie, the steps to prepare the

data were made with the Python library pandas[65] [66] and will be described here.

The raw data we receive from the production systems consist of a excel table that has

the 5 following columns, car identification number, sequence number, date, type of car

batteries and model of the car, and we have records for the entire 2018 and 2019 years.

After a quick analysis to this data we can see that it’s not prepared for machine learning

input the first step was dropping the sequence number, because it served no purpose for

our machine learning objectives.

The machine learning layer requires data with a given frequency or time steps, since

we have production data and we have no time step defined, each entry represents a car

produced at a given moment, to solve this issue, we decided to resample the data to a

daily format and created a dataset with the index being the dates from the first day of

2018 to the last day of 2019. After this operation our dataset now has one entry for each

day and has 8 columns, one for each batterie type(5) and one for each model(3) produced,

this is exemplified in table 4.1.

After this some operations on the data were made in a trial and error based on the

performance results from the machine learning layer.
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Date J0S J0T J0V J1N J2D 711 7N2 A11 Month weekday Year Week
01/01/2018 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0 2018 1
02/01/2018 269.0 150.0 136.0 23.0 16.0 38.0 106.0 450.0 1 1 2018 1
03/01/2018 349.0 36.0 364.0 19.0 35.0 60.0 134.0 609.0 1 2 2018 1
04/01/2018 183.0 49.0 550.0 21.0 40.0 81.0 122.0 640.0 1 3 2018 1
05/01/2018 519.0 31.0 263.0 14.0 29.0 73.0 134.0 649.0 1 4 2018 1
06/01/2018 184.0 39.0 83.0 8.0 4.0 29.0 48.0 241.0 1 5 2018 1
07/01/2018 2.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1 6 2018 1
08/01/2018 583.0 35.0 220.0 20.0 20.0 77.0 135.0 666.0 1 0 2018 2

Table 4.1: Input Data

The model with better results in terms of accuracy had as additional columns with the

month number of the date, information about day of the week, and the calendar week

number. These were added with the hope that some of these basic additions can make

some patterns more evident to the machine learning model and we got positive results.

One other test that was made but did not improve accuracy significantly was the intro-

duction of lag values, each entry of data would have a set of columns with the value from

the n entries before. As this operation did not prove advantageous it was dropped.

After these steps a simple division on training and test datasets was made.

Finally, before being feed into the machine learning model the data needs to normalize

to numbers between 0 and 1. To achieve this we utilized the MinMaxScaler feature from

the Scikit library.

Scikit-learn[67] is an open source machine learning library that supports supervised

and unsupervised learning. It also provides various tools for model fitting, data pre-

processing, model selection and evaluation, and many other utilities.

4.2 Storage layer

This layer consists database with all the data described on the data analysis chapter. This

layer is important to store data continuously and effortlessly and to eliminate the loss of

historical data, this way the growing amount of data can feed the analytics and improve

their value.

For this layer multiple databases were considered both relational and non-relational. Non-

relational databases offer multiple data models, are easily scalable and can be faster that

relational databases however some of them are incompatible with the ACID (atomicity,

consistency, isolation, durability) properties, relational databases like PostgreSQL [68] of-

fer ACID compliance, ease of both implementation and maintenance as well as a standard

query language, but as a drawback relational databases can be difficult to scale[69] [70].

During the data understanding and data preparation phases of this dissertation became

evident that the data from the VWAE logistics processes is highly related between sources

therefore a relational database was chosen in specific PostgreSQL because it is one of the

more popular open-sourced solutions available.

Figure 4.2 shows the diagram of this database with the different tables and connections
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made between them. This database was created to store all of the historical data described

in the chapter 3 of this document. The objects of this database and connections between

them were created in a way to integrate all of the part numbers present at VWAE and this

process wouldn’t be possible without the data analysis made before, it was this process

that identified the connections between the different data clusters, and the valuable and

redundant information.

Data is now structured, clean and integrated in a single database.

Figure 4.2: DB diagram

4.3 Machine learning layer

For our system to work a prediction of the usage of car batteries on the VWAE produc-

tion line was necessary. To this end, we recurred to machine learning models. Multiple

models were experimented with different parameters and features and the chosen model

was Long short-term memory (LSTM) which is an artificial recurrent neural network ar-

chitecture. This choice was made because LSTM are reportedly very good at forecasting

time series data and do not require a lot of parameterization for multivariate datasets. To

implement this model, we used an already built solution for LSTM in python from the
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KERAS API[38].

Since in the previous layer (ETL layer) we prepared the data for machine learning input

all we need to do is create and feed a model. The objective is to input all of the produc-

tion data available at the moment for each type of batteries and predict production for

the next 3 days, to allow us to calculate the exact amount of batterie orders we need to

place. To simplify we decided to predict the production of a single type of batterie the

1S0915105A(J0S), however some tests to predict the production of the other high runners

showed similar results as we could expect.

For evaluation purposes we decided to use cross validation which is a technique to evalu-

ate the performance of ML models, the objective of cross validation is to test the model’s

ability to predict new data that was not used in estimating it, in order to flag problems

like overfitting or selection bias and to give an insight on how the model will generalize

to an independent dataset, in this case we divided the input dataset in 90% of the records

for training of the model and the last 10% for testing the model, and also the model will

set apart 10% of the training data, will not train on it, and will evaluate the loss on this

data at the end of each epoch. The loss function that we are utilizing is the MSE (Mean

Squared Error), that like the name says measures the average squared difference between

the estimated values and the actual value.

The process of building a machine learning model is iterative and throughout this process

various combinations of models and parameters have been tested and the choice of the

implemented model and its parameters was based on the performance of the different

models tested.

One of the first decision was the steps ahead that our model would forecast, in this case

we are utilizing daily data which means that each time step corresponds to one day, since

we need to predict 3 days in to the future this parameter was locked on 3. This means

that our model will try to predict 3 days after the last data provided.

Throughout this process it became clear that for our data and models we need at least

50 epochs of training because the validation and training errors would consistently drop

during the first 50 epochs and that more than 200 epochs of training are impractical since

from this point most of the models showed no significant improvements in performance

and in some cases the validation error climbed which is a sign that the model is overfit-

ting.

Regarding optimizers, which are algorithms or methods used to change the attributes of

your neural network such as weights and learning rate in order to reduce the losses, we

experimented with “Adam” and “RMSProp” and ended up using “Adam” because it we

got better results.

For the batch size we tried multiple values and ended up choosing 64 because it was the

one with better results without compromising the training time.

Regarding the optimal number of layers, we observed that one and two layers of LSTM

presented similar results, but the addition of more layers would result in worse perfor-

mances.
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To prevent our model from overfitting we inserted a dropout a layer. Dropout is a tech-

nique for addressing this problem. The idea is to randomly drop units (along with their

connections) from the neural network during training. This prevents units from co-

adapting too much and improves the performance of neural networks in multiple tasks

[71].

The model implemented consisted of one LSTM layer with 2000 units and a dropout of

20%, we utilized a batch size of 64, and trained for 200 epochs. The model was com-

piled using the “Adam” optimizer and the training and validation errors evolution across

epochs are shown in the results chapter in figure 5.5 and the predictions for the last 15

days in green as well as the true values in red are shown in figure 5.6.

4.4 Processing layer

In this section some calculations are needed to provide the optimizations on the inventory

levels and order placement.

Here we take the predictions outputted by our machine learning layer to establish the

necessary material for the desired time range.

Then with that information we consult the hourly stock to evaluate if the inhouse stock

can meet the production for that time range.

For each batterie type the system will perform a simple subtraction, the available stock

at the moment minus the production for the desired time range. We also need to subtract

the security stock because we want to avoid dropping below this level. If this calculation

returns a positive number, it means that we are facing a situation where the available

stock will meet the demands without the need for new material. If it’s a negative number

it means we´re facing a situation where the stock will not meet the demands for the entire

time range without new material and the absolute value of this number is the quantity of

new material that is necessary to meet the demand. Obviously if this number is zero, we

are facing a limit situation where the available stock is even with the demand.

Note that at this point our intention is not to provide the optimal stock level for each

part, but it’s to provide optimizations to a complex problem and to iteratively improve

the system. By doing this we can minimize situations of overstock and reduce de number

of warehouse space allocated to this part.

We intended for this calculations layer to be simple and objective as possible as the

information gathered from data is already close to provide insights.

4.5 Visualization layer

Data visualization is the act of taking information (data) and placing it into a visual

context, such as a map or graph.

Data visualizations make big and small data easier for the human brain to understand,

40



4.5. VISUALIZATION LAYER

and visualization makes it easier to detect patterns, trends, and outliers in groups of data.

Good data visualizations should place meaning into complicated datasets so that their

message is clear and concise. We are an inherently visual world, where images speak

louder than words. Data visualization is especially important when it comes to big data

and data analyzation projects.

With this in mind and in order to get the most out of our data all of the features previously

developed were aggregated and displayed in an interactive dashboard.

To build this dashboard we utilized an open source visualization and analytics software

called Grafana. It provides charts, graphs, and alerts for the web when connected to

supported data sources. It is expandable through a plug-in system. End users can create

complex monitoring dashboards using interactive query builders.

This dashboard contains data from all of the analysed clusters with pre-defined views

and graphs but also allows user interaction, like the ability to adjust the time window

selected and apply filters to the data.

Another feature present is the automatic connection to the digital twin, this is visible in

figure 4.3, where planners can select a time range and press the start simulation button

and automatically an instance of the simulation software (Visual Components) starts with

the selected data to allow the user to validate and gather insights from a simulation point

of view with minimal effort.

In the figures 4.4 and 4.5 the temporal selection provides an easy way to visualize trends

Figure 4.3: Digital Twin connection

and changes over time and across all clusters. Each cluster has a dedicated view in the

dashboard where multiple graphics and tables are presented to users, in figure 4.4 one of

the graphs represents the take rate of the five car batteries part numbers in VWAE and

in figure 4.5 all 3 graphics represent the internal movements of containers regarding car
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Figure 4.4: receiving dashboard

batteries in the warehouse. The integration of datasets is visible in the figures and with

this integration and visualization tools we eliminated all data-silos present in the logistics

data available in VWAE. Planners can now in an intuitively manner consult data from

multiple sources at the same time and also analyse historical data to make validations or

look for patterns.

This functionality will be especially important when the planners are looking for make

changes or even validate patterns recognized by the machine learning functionalities. It’s

all about providing information in an easy to read format to planners who will make the

informed decisions.
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Figure 4.5: warehousing dashboard
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5
Results

The objective of this chapter is to evaluate the impact of our system in optimizing the

inventory levels at VWAE, our study focused particularly on car batteries and because of

that all the results will be regarding this parts, however our approach can be applied to

many of the car components existent at VWAE. The first part of this chapter presents the

results of 3 machine learning models predicting the application of the 1S0915105A(J0S)

batterie production and one for predicting the 5TA915105B(J0V) batterie to explain the

decisions made throughout the process of building a machine learning model described

in the architecture chapter of this document.

As stated in the architecture chapter throughout the process of building our machine

learning model we provided different input data to the model, but to allow comparisons

between the models presented all had the same input. This input data consisted of the

normalized daily production data, and the addition of the weekday number and the cal-

endar week number as showed in table 4.1.

Model I consisted on one LSTM layer with 2000 units and a dropout of 20% , we utilized

a batch size of 64, and trained for 500 epochs. The model was compiled using the “RM-

Sprop” optimizer and on figure 5.1 the training and validation errors (Y axis) evolution

across epochs (X axis) are shown and on figure 5.2 the predictions of production of cars

with the 1S0915105A batterie in the last 62 days of 2019 days in green as well as the true

values in red are shown. With the validation error stabilizing with values very close to

zero very different from the high validation error we can see that the model was overfit-

ted.

Model II consisted on one LSTM layer with 3000 units and a dropout of 20% , we utilized

a batch size of 64, and trained for 200 epochs. The model was compiled using the “Adam”

optimizer and on figure 5.3 the training and validation errors (Y axis) evolution across

epochs (X axis) are shown and on figure 5.4 the predictions of production of cars with the
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Figure 5.1: Error model I1

Figure 5.2: Predictions model I

1S0915105A batterie in the last 62 days of 2019 days in green as well as the true values

in red are shown.

Model III consisted on one LSTM layer with 2000 units and a dropout of 20% , we uti-

lized a batch size of 64, and trained for 100 epochs. The model was compiled using the

“Adam” optimizer and on figure 5.5 the training and validation errors (Y axis) evolution

across epochs (X axis) are shown and on figure 5.6 the predictions of production of cars

with the 1S0915105A batterie in the last 62 days of 2019 days in green as well as the true

values in red are shown. This was the model that presented better results therefore was

46



Figure 5.3: Error model II

Figure 5.4: Predictions model II
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implemented in our solution.

The model IV for predicting the 5TA915105B(J0V) production is very similar to the ones

Figure 5.5: Error model III

described before and presents similar results and consists on one LSTM layer with 2000

units and a dropout of 20% , we utilized a batch size of 64, and trained for 200 epochs.

The model was compiled using the “Adam” optimizer and on figure 5.7 the training and

validation errors (Y axis) evolution across epochs (X axis) are shown and on figure 5.8

the predictions of production of cars with the 5TA915105B batterie in the last 62 days of

2019 days in green as well as the true values in red are shown.

This shows that the machine learning layer can predict the production with a although

we have only 2 years of data to train the model and we expect the model’s performance

to improve significantly with the addition of more data and even though some different

models and parameters were tested this is still an early stage of the developing phase and

we expect improvements moving forward.

Now regarding the results from the entire system we can’t exactly show actual results be-

cause the system needs to be put in place to be tested and then it would require multiple

months until conclusions on the actual results can be analysed. The application of this

system on historical data to evaluate its performance would be clearly biased so it was

disregarded.

However historical data can be used to estimate the possible optimizations. In chapter 3

of this document we pointed out that in 2018 there were multiple cases of overstock of

48



Figure 5.6: Predictions model III

Figure 5.7: Error model IV
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Figure 5.8: Predictions model IV

car batteries at VWAE, particularly in table 3.7 we can see that for every car batterie in

VWAE we are at least half of the time in overstock situations and 25% of the time in severe

overstock, to give some perspective the maximum inventory value of the 1S0915105A

component in 2018 was 75 packages, if the factory was functioning at optimal pace (900

cars day) and only produced cars with the 1S0915105A batterie it would take more than

9 days to deplete the warehouse. If for example, we look at the situation in September

illustrated in chapter 3 in figure 3.2 and by analysing this data in detail we can see how

our system can reduce situations of overstock. The inventory levels for the 1S0915105A

batterie starts the month at 26 packages and continues to drop to 21, that is still over

the security level, until a truck arrives with 21 packages on day 2 increasing the level

to 42, and again on the forth 26 more packages and again on the fifth 10 more. During

these 4 days arrived 57 packages and were consumed around 25. This led to a value of 65

packages on the end of the fifth of September. Even after this peak the inventory levels

drop for a few days but never dip below the overstock threshold and then a new mountain

of overstock where the maximum value reached 61 packages. The orders of this material

were placed 5 days before their arrival at VWAE, we believe that if planners get access to

this data and our visualization capabilities as we can see in figure 5.9 and our machine

learning predictions situations like the one described before would occur less frequently

and with less impact. With transport, inventory and production data available as well

as our machine learning predictions in a single platform with easy access we believe we
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can help logistics planners at VWAE reduce the occurrence of overstock situations in half

regarding car batteries. This will save warehouse space and reduce warehouse costs.

Figure 5.9: Inventory levels on the BOOST 4.0 Dashboard
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6
Conclusions and Future work

6.1 Conclusions

The main objectives of this work were to improve efficiency in intralogistics processes at

VWAE and to present a data-driven system capable of reducing situations of overstock.

We believe that both objectives were accomplished.

Regarding the machine learning model, we feel good about the choice of a LSTM model

as it quickly noticed patterns in a time series data.

The decision to do an internship at VWAE during this project was in my opinion positive

for both sides. I learned a lot during this internship and was able to apply some of

the skills that I learned during my academic path. I also believe that the work I did

at VWAE may prove to be an asset, especially the work focused on the data gathering

automatization, and I believe that I contributed to a better data culture at VWAE and that

in the future this will bring great advantages to VWAE. The toughest objective during

this project was the integration of data between the multiple sources and the subsequent

elimination of data silos and this challenge could have been even more difficult had it not

been for the constant support that I enjoyed thanks to the internship. The fact that I can

talk to people who really know the systems in place and that I can validate data on the

shop floor has proven important.

Looking at the whole scope of the BOOST 4.0 project this system is only one way we can

improve intralogistics processes and we see the actions in the data gathering and data

integration as the biggest contribute made for improvement in the present and future.

This integration process was made with the purpose of being scalable and this can be the

groundwork for multiple future applications of data-driven solutions.

This now allows management at VWAE to select a focus problem and with minimal effort

from planner’s, powerful data-based solutions can be quickly built.
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The contribute to the creation of a digital twin of the intralogistics processes at VWAE also

added value to the final solution and opened paths for more innovative and interactive

optimizations.

The possibility of improvements in the intralogistics process planning with data-driven

systems is demonstrated and this system can be used as experience to build more solutions

without as much initial resistance created by the necessity of data quality, quantity and

integration.

6.2 Future work

As stated before, many alternative optimizations and systems can follow so as future

work, there are multiple different paths: The first optimization is to our machine learning

model because this is a data hungry model we could improve the results if we keep on

increasing the data that we feed the model. This is not the only thing that could improve

the results, the process of building a machine learning model is iterative and although

our model is successful it is still not close to optimal. There are multiple things that can

be adjusted, like the input data by adding features, the number of layers in the model, or

parameters like batch sizes or the number of epochs to train the model.

Another path is the scalability of this implemented system for inventory optimization of

car batteries to the entire scope of car components present in VWAE. The foundations for

this work are already built since the entire system was built considering this possibility.

This system is built to look for optimizations regarding the functioning of the processes,

but a financial component can be added to look for optimizations in a more lucrative way.

As an example, with the addition of some data the system could be utilized to minimize

the logistics costs(transport + handling+ storage costs) directly instead of the number of

transport trucks or stock levels.

The data gathering and understanding showed that there is still immense room for opti-

mizations since there is a lot of unexplored data throughout the different clusters on the

VWAE factory.

Another possible future work is the search of patterns within the multiple clusters of data

by comparing it with some available data like the weather conditions per example.

The preparing and feeding data process to the digital twin of the intralogistics processes

studied is also a path that has multiple ramifications. The scalability to all car compo-

nents seems the most natural first step.
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