153 research outputs found

    Deformations of calibrated subbundles of Euclidean spaces via twisting by special sections

    Full text link
    We extend the "bundle constructions" of calibrated submanifolds, due to Harvey--Lawson in the special Lagrangian case, and to Ionel--Karigiannis--Min-Oo in the cases of exceptional calibrations, by "twisting" the bundles by a special (harmonic, holomorphic, parallel) section of a complementary bundle. The existence of such deformations shows that the moduli space of calibrated deformations of these "calibrated subbundles" includes deformations which destroy the linear structure of the fibre.Comment: 16 pages, no figures. Version 2: Only minor cosmetic and typographical revisions. To appear in "Annals of Global Analysis and Geometry.

    Measurement of the 18Ne(a,p_0)21Na reaction cross section in the burning energy region for X-ray bursts

    Full text link
    The 18Ne(a,p)21Na reaction provides one of the main HCNO-breakout routes into the rp-process in X-ray bursts. The 18Ne(a,p_0)21Na reaction cross section has been determined for the first time in the Gamow energy region for peak temperatures T=2GK by measuring its time-reversal reaction 21Na(p,a)18Ne in inverse kinematics. The astrophysical rate for ground-state to ground-state transitions was found to be a factor of 2 lower than Hauser-Feshbach theoretical predictions. Our reduced rate will affect the physical conditions under which breakout from the HCNO cycles occurs via the 18Ne(a,p)21Na reaction.Comment: 5 pages, 3 figures, accepted for publication on Physical Review Letter

    Octupole transitions in the 208Pb region

    Get PDF
    The 208Pb region is characterised by the existence of collective octupole states. Here we populated such states in 208Pb + 208Pb deep-inelastic reactions. γ-ray angular distribution measurements were used to infer the octupole character of several E3 transitions. The octupole character of the 2318 keV 17− → 14+ in 208Pb, 2485 keV 19/2 − → 13/2 + in 207Pb, 2419 keV 15/2 − → 9/2 + in 209Pb and 2465 keV 17/2 + → 11/2 − in 207Tl transitions was demonstrated for the first time. In addition, shell model calculations were performed using two different sets of two-body matrix elements. Their predictions were compared with emphasis on collective octupole states.This work is supported by the Science and Technology Facilities Council (STFC), UK, US Department of Energy, Office of Nuclear Physics, under Contract No. DEAC02-06CH11357 and DE-FG02-94ER40834, NSF grant PHY-1404442

    Analog E1 transitions and isospin mixing

    Get PDF
    We investigate whether isospin mixing can be determined in a model-independent way from the relative strength of E1 transitions in mirror nuclei. The specific examples considered are the A=31 and A=35 mirror pairs, where a serious discrepancy between the strengths of 7/2--->5/2+ transitions in the respective mirror nuclei has been observed. A theoretical analysis of the problem suggests that it ought to be possible to disentangle the isospin mixing in the initial and final states given sufficient information on experimental matrix elements. With this in mind, we obtain a lifetime for the relevant 7/2- state in 31S using the Doppler-shift attenuation method. We then collate the available information on matrix elements to examine the level of isospin mixing for both A=31 and A=35 mirror pairs

    TSR: A storage and cooling ring for HIE-ISOLDE

    Get PDF
    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project

    Charged-Particle Thermonuclear Reaction Rates: III. Nuclear Physics Input

    Get PDF
    The nuclear physics input used to compute the Monte Carlo reaction rates and probability density functions that are tabulated in the second paper of this series (Paper II) is presented. Specifically, we publish the input files to the Monte Carlo reaction rate code RatesMC, which is based on the formalism presented in the first paper of this series (Paper I). This data base contains overwhelmingly experimental nuclear physics information. The survey of literature for this review was concluded in November 2009.Comment: 132 page

    Spectroscopy of 18^{18}Na: Bridging the two-proton radioactivity of 19^{19}Mg

    Full text link
    The unbound nucleus 18^{18}Na, the intermediate nucleus in the two-proton radioactivity of 19^{19}Mg, was studied by the measurement of the resonant elastic scattering reaction 17^{17}Ne(p,17^{17}Ne)p performed at 4 A.MeV. Spectroscopic properties of the low-lying states were obtained in a R-matrix analysis of the excitation function. Using these new results, we show that the lifetime of the 19^{19}Mg radioactivity can be understood assuming a sequential emission of two protons via low energy tails of 18^{18}Na resonances

    Direct Measurement of the Key e c. m.=456 keV Resonance in the Astrophysical Ne 19 (p,Îł) Na 20 Reaction and Its Relevance for Explosive Binary Systems

    Get PDF
    We have performed a direct measurement of the Ne19(p,Îł)Na20 reaction in inverse kinematics using a beam of radioactive Ne19. The key astrophysical resonance in the Ne19+p system has been definitely measured for the first time at Ec.m.=456-2+5 keV with an associated strength of 17-5+7 meV. The present results are in agreement with resonance strength upper limits set by previous direct measurements, as well as resonance energies inferred from precision (He3, t) charge exchange reactions. However, both the energy and strength of the 456 keV resonance disagree with a recent indirect study of the Ne19(d, n)Na20 reaction. In particular, the new Ne19(p,Îł)Na20 reaction rate is found to be factors of ∌8 and ∌5 lower than the most recent evaluation over the temperature range of oxygen-neon novae and astrophysical x-ray bursts, respectively. Nevertheless, we find that the Ne19(p,Îł)Na20 reaction is likely to proceed fast enough to significantly reduce the flux of F19 in nova ejecta and does not create a bottleneck in the breakout from the hot CNO cycles into the rp process
    • 

    corecore