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We investigate whether isospin mixing can be determined in a model-independent way from the
relative strength of E1 transitions in mirror nuclei. The specific examples considered are the A = 31
and A = 35 mirror pairs, where a serious discrepancy between the strengths of 7/2− → 5/2+

transitions in the respective mirror nuclei has been observed. A theoretical analysis of the problem
suggests that it ought to be possible to disentangle the isospin mixing in the initial and final states
given sufficient information on experimental matrix elements. With this in mind, we have obtained
a lifetime for the relevant 7/2− state in 31S using the Doppler-shift attenuation method (DSAM).
We have then collated the available information on matrix elements in order to examine the level of
isospin mixing for both A = 31 and A = 35 mirror pairs.

PACS numbers: 21.10.Tg, 23.20.Js, 27.30.+t

I. INTRODUCTION

The concept of isobaric spin (isospin) was introduced
into nuclear physics to represent the fact that the nu-
clear force is to first order charge independent [1]. Were
charge independence obeyed in the strictest sense, then
isobaric multiplets would be degenerate in energy, and
all bound nuclear states would have a definite and pure
isospin. Moreover, there would be an exact correspon-
dence between the wavefunction of states in an isobaric
multiplet. In fact, these degeneracies are lifted by the
action of isospin non-conserving interactions, the most
important of which is the Coulomb force. The result-
ing separation of the members of an isobaric multiplet is
termed the Coulomb displacement energy (CDE). Taking
into account the substantial mass differences arising from
the CDE, there are also discrepancies between the exci-
tation energies of states in mirror nuclei as a function of
angular momentum at the level of 100 keV [2]; such devi-
ations reflect detailed nuclear structure effects such as the
difference in the alignment of proton-proton and neutron-
neutron pairs [2], and the electromagnetic spin-orbit in-
teraction [3, 4]. A more general question is the extent to
which the Coulomb interaction can induce the breakdown
of isospin purity; an issue reviewed by Soper [5]. These
impurities can be manifested in a range of experimental
scenarios including isospin-forbidden particle decays from
highly-excited, particle-unbound states, perturbation of
electromagnetic matrix elements and nuclear beta decay.

Isospin mixing and its effect on beta-decay matrix ele-
ments is of considerable interest in the context of tests of
the Conserved Vector Current hypothesis [6]. Such tests
concern the beta decay of Fermi superallowed emitters
for which the log ft value should have a fixed value if the
CVC hypothesis is correct. Small isospin breaking effects
lead to weak Gamow-Teller decay branches in competi-
tion with the dominant superallowed branch and the in-
fluence of such branches must be accounted for. Conven-
tionally, the relevant isospin mixing of the ground states
is evaluated using shell-model calculations; typical values
being ∼ 0.5% for mass 50 (fp-shell nuclei) rising to 1%
or higher for A ≈ 70 (fpg shell) [7]. Approaches which
could extract isospin mixing from experimental data in
a model-independent manner are, therefore, of consider-
able interest.

An open question is to what extent isospin mixing may
be inferred from the impact it may have on electromag-
netic transition rates. Warburton and Weneser reviewed
this issue nearly forty years ago [8] and discussed isospin
mixing in the context of a number of selection rules
expected for both conjugate and self-conjugate nuclei.
Their first rule concerned the fact that, between states
with Tz 6= 0, electromagnetic transitions must obey the
selection rule ∆T = 0,±1. A γ decay from a T = 2 to
T = 0 state, therefore, could only arise due to isospin
mixing of T = 1 components in initial or final states, or
the isotensor component of the Coulomb interaction. In
practice, the relevant T = 2 states lie at very high exci-



tation energy, and the relevant γ-ray transitions are high
in energy. This poses an experimental challenge. More-
over, the fact that such states are particle unbound fur-
ther complicates the analysis. Warburton and Weneser
also pointed out a number of selection rules applying to
self-conjugate (N = Z) nuclei [8]. For example, since
E1 transitions are purely isovector in nature, they are
strictly forbidden between states of the same isopin in
Tz = 0 nuclei [9]. This behaviour has been examined by
Farnea et al. [10] in the case of the 5− → 4+ transition in
64Ge, where this transition is found to be dominated by
its M2 component. The E1 component of this transition
has the very weak strength of ∼ 2.5 × 10−7 W.u. Calcu-
lations suggest that the level of isospin mixing needed
to account for the observed E1 transition strength is
α2 = 2.50%+1.0%

−0.7% [10]. A second rule relating to self-
conjugate nuclei, advanced by Warburton and Weneser
is the weakness of ∆T = 0, M1 transitions in such nu-
clei. A good system for searching for the role of isospin
mixing, therefore, is an odd-odd N = Z nucleus, since
T = 0 and T = 1 states lie close together near the ground
state, and accidental degeneracies are likely. Lisetskiy et

al. [11] have made a detailed analysis of γ decays in the
odd-odd N = Z nucleus 54Co. In particular, they consid-
ered the decays of a doublet of 4+ states with T = 0 and
T = 1, respectively, to a T = 0, 3+ state. Analysis of the
E2/M1 multipole mixing ratios for these decays allowed
the isospin mixing to be quantified at ∼ 0.2% [11].

A further selection rule advanced by Warburton and
Weneser is that corresponding E1 transitions in conju-
gate nuclei (i.e. the mirror pair of nuclei, one with A
protons and B neutrons, the other with B protons and A
neutrons) should have equal strength [8]. They showed
that this rule was essentially satisfied for E1 transitions in
the conjugate nuclei 11C and 11B, while there was a fac-
tor of two difference in the E1 transition strengths for the
decay of the 1/2+ excited states in 13C and 13N. There
is a very large shift in the energy of 1/2+ state in 13N at-
tributable to the Thomas-Ehrman effect, which relates to
the greater radial extent of the proton wave-function [12].
Such an effect is especially pronounced for the s1/2 or-
bital [12]. The non-equivalence of the wave-functions for
the 1/2+ states could therefore explain the difference in
E1 transition strengths. A still more dramatic example
was the case of the decay of the 1/2+ levels at 8.312
MeV in 15N and 7.550 MeV in 15O. In this case, the E1
transition strengths differed by a factor of 400, but here
the situation is complex as the state in 15O is unbound
and so mixing effects may be very large [8]. Although
data on E1 transitions was limited at the time Warbur-
ton and Weneser wrote their review [8], it appeared to
show that for cases where both the decaying states under
consideration were bound, the respective E1 transitions
had nearly equal strength, even where important nuclear
structure phenomena like the Thomas-Ehrman shift is at
work. Warburton and Weneser commented that it would
be very interesting to test this rule for heavier nuclei,
where isospin mixing would be expected to be larger [8];

such data did not exist at that time, and little devia-
tion from this rule has shown up since. It was, therefore,
of great interest when Ekman et al. [3] in their study
of the T = 1/2 mirror nuclei 35Ar and 35Cl highlighted
isospin mixing as the possible origin of the marked dif-
ference in the decay branching of the first 7/2− state in
the respective nuclei. In 35Ar, an E1 transition formed
a strong decay branch from the 7/2− state to the 5/2+

state, while in the well-studied stable nucleus 35Cl, the
analogous transition was almost completely absent. In
both nuclei, the respective 7/2− states were well bound.
Ekman et al. [3] suggested that the cancellation of the E1
matrix element in 35Cl arose from isospin mixing, in this
case, between the dominant T = 1/2 and a weak T = 3/2
component. They were unable, however, to quantify this
suggestion since absolute transition strengths were not
available for the relevant transitions in 35Ar. Similar be-
haviour to that reported for A = 35 was also found in the
T = 1/2 mirror nuclei 31S and 31P [4, 13]. Again, the
decay pattern of the first 7/2− state was found to change
dramatically between the mirror nuclei. In this case, a
2195-keV E1 transition clearly present in 31P was found
to have no counterpart in the decay scheme of 31S. This
is the reverse of the situation in the A = 35 mirror pair
where the E1 was found to disappear in the Tz = 1/2
member of the pair. Again, the levels concerned were all
particle-bound and so the effects could not be related to
the effects of the loosely-bound proton. In the A = 31
example, as for the A = 35 mirror nuclei, the relevant
transition strengths were unavailable prior to the present
work. The motivation of the present work, therefore,
was to obtain transition strengths to quantify this phe-
nomenon as well as to examine how such information
could be used to extract the isospin mixing, if present.

II. ISOSPIN MIXING AND ELECTRIC DIPOLE
TRANSITIONS IN MIRROR NUCLEI

Let us consider, from a theoretical perspective,
whether E1 transitions between analogue states of mirror
nuclei can be used to extract information on isospin mix-
ing. This discussion is formulated in general terms with-
out explicit reference to specific isobaric systems. As will
be shown, the main result of this analysis is that, pro-
vided sufficient B(E1) values are known experimentally,
a model-independent estimate of isospin mixing can be
obtained which does not rely on a calculation of E1 ma-
trix elements. Having set this challenge to experiment,
we will review whether sufficient information is available
in either the A = 31 or A = 35 systems to obtain a
model-independent determination of isospin mixing.

We begin the discussion with reference to Fig. 1 which
shows a generic ensemble of isobaric analogue states in
Tz = ±3/2 and ±1/2 nuclei near the N = Z line. We as-
sume that the B(E1) values between initial and final low-
lying states Ji and Jf in the nuclei with Tz = +1/2 and
Tz = −1/2 are known experimentally. These states have
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FIG. 1: Schematic figure of isobaric analogue states in Tz =
±3/2 and ±1/2 nuclei near the N = Z line. The arrows
indicate the 10 possible E1 transitions from where information
on the isospin mixing can be extracted. The thick arrows
correspond to the E1 transitions known in the A = 31 and
A = 35 nuclei (see text).

a dominant T = 1/2 component, but contain small ad-
mixtures of higher-lying states with T = 3/2. The prob-
lem at hand is the following: What additional experimen-
tal information is required to determine the isospin mix-
ing, which, for the present purposes, may be different for
the two states involved? In Fig. 1, one such set of higher-
lying states is shown; they necessarily have the same an-
gular momenta Ji and Jf , as their low-lying siblings, but
carry predominantly isospin T = 3/2. Of course, these
higher-lying states may in turn contain T = 5/2 admix-
tures, but as long as these are small they do not affect
the subsequent argument and they can be neglected. The
figure shows the simplest situation when only one higher-
lying state for each angular momentum Ji and Jf mixes
with the T = 1/2 states. If there are several such higher-
lying states, each contribution must be considered sepa-
rately and gives rise to additional isospin admixtures.

An observation of central importance to what follows is
that the electric dipole operator, to a very good approxi-
mation, has isovector character, that is, it transforms as a
pure vector under rotations in isospin space. Its isoscalar
part is totally absent from an E1 transition internal to
the nucleus. This implies that, under the assumption
of isospin symmetry, there exist definite relations be-
tween transitions between isobaric analogue states. In
particular, the B(E1) values of transitions between cor-
responding states in mirror nuclei are identical and, more
generally, those between isobaric analogue states are pro-
portional with proportionality factors that are related to
isospin Clebsch-Gordan coefficients. If isospin were an
exact symmetry, all E1 transition strengths could be ex-
pressed in terms of only four matrix elements reduced in

angular momentum and in isospin which we denote as

M2Tf ,2Ti
≡ 〈Jf ; Tf |||T (1)(E1)|||Ji; Ti〉. (1)

The triple bars indicate that the dependence on the initial
and final angular momentum projections Mi and Mf and
on the isospin projection Tz has been factored out. This
dependence is contained in the Clebsch-Gordan coeffi-
cients 〈JfMf 1µ|JiMi〉 and 〈TfTz 10|TiTz〉 (or, depending
on the convention, corresponding 3j symbols ), where we
use the fact that the E1 transition operator has isovec-
tor character as indicated with its superscript ‘(1)’. The
initial and final angular momenta Ji and Jf are the same
for all four reduced matrix elements, but the isospins Ti

and Tf can be 1/2 or 3/2. The explicit expression for
an arbitrary B(E1) value in terms of the triply barred
reduced matrix elements is

B(E1; JiTiTz → JfTfTz)

=
1

2Ji + 1
〈Jf ; TfTz||T (1)

0 (E1)||Ji; TiTz〉2, (2)

with

〈Jf ; TfTz||T (1)
0 (E1)||Ji; TiTz〉

= (−)Tf−Tz

(

Tf 1 Ti

−Tz 0 Tz

)

M2Tf ,2Ti
, (3)

where the symbol between brackets is a 3j symbol. The
conclusion is that, if isospin is an exact symmetry, the
B(E1) values of the 10 transitions indicated in Fig. 1 can
be expressed in terms of four quantities M11, M13, M31,
and M33. Note, in particular, that M31 is different from
M13.

If one allows for isospin mixing between the low- and
high-lying Ji and Jf states, a further two unknowns are
introduced which can be denoted as mixing angles φi and
φf . The true low- and high-lying initial states |J1i〉 and
|J2i〉 can be expressed as follows in terms of the isospin
eigenstates:

|J1i〉 = cosφi|Ji; T = 1/2〉+ sin φi|Ji; T = 3/2〉,
|J2i〉 = − sinφi|Ji; T = 1/2〉 + cosφi|Ji; T = 3/2〉,(4)

and similarly for the final states |J1f〉 and |J2f〉 in terms
of the mixing angle φf . As a consequence, the B(E1)
values of the 10 transitions are modified and now depend
on the four matrix elements Mkl as well as on the two
mixing angles φi and φf . We find that the B(E1) values
in the Tz = +1/2 nucleus are given by

B(E1; J1i → J1f) =
1

6(2Ji + 1)

(

M11 cosφf cosφi −
M33√

10
sin φf sin φi − M13 cosφf sin φi + M31 sin φf cosφi

)2

,



B(E1; J1i → J2f) =
1

6(2Ji + 1)

(

−M11 sin φf cosφi −
M33√

10
cosφf sin φi + M13 sin φf sin φi + M31 cosφf cosφi

)2

,

B(E1; J2i → J1f) =
1

6(2Ji + 1)

(

M11 cosφf sin φi +
M33√

10
sin φf cosφi + M13 cosφf cosφi + M31 sin φf sinφi

)2

,

B(E1; J2i → J2f) =
1

6(2Ji + 1)

(

M11 sin φf sin φi −
M33√

10
cosφf cosφi + M13 sin φf cosφi − M31 cosφf sinφi

)2

. (5)

In the Tz = −1/2 nucleus, the same expressions apply
but with the replacements Mkl 7→ −Mkl if k = l and
Mkl 7→ Mkl if k 6= l. Finally, in the Tz = ±3/2 nuclei the
B(E1) values are given by

B(E1; Ji → Jf)
3

20(2Ji + 1)
(M33)

2 . (6)

If at least six (appropriate) B(E1) values are known,
these equations determine the matrix elements Mkl and
the mixing angles φi and φf . If five B(E1) values are
known, they determine a relation between φi and φf .

To illustrate our method, we assume that the five tran-
sitions which are indicated with thick arrows in Fig. 1
have known B(E1) values. We can then eliminate the
four unknown matrix elements Mkl and we obtain the
following equation in φi and φf :

3
[

M(−1/2, 1, 1)− M(+1/2, 1, 1)

+M(+1/2, 1, 1) cos2φf + M(+1/2, 1, 1) cos2φi

−M(+1/2, 1, 2) sin2φf − M(+1/2, 2, 1) sin2φi

]

= 4M(+3/2, 1, 1) sinφf sin φi, (7)

where M(Tz, k, l) is a short-hand notation for the square-
root of a measured B(E1) value in a Tz nucleus according
to

M(Tz, k, l) ≡ ±
√

B(E1; Jik → Jfl). (8)

Equation (7) defines a relation between the mixing angles
φi and φf which is independent of all theoretical matrix

elements Mkl.
Note that the measured transition strengths do not

provide information on the sign of the quantities
M(Tz, k, l). If five measured B(E1) values are known,
this leads in principle to 25 = 32 different choices. The
problem can be simplified as follows. First, we have
that M(−1/2, 1, 1) ≈ −M(+1/2, 1, 1), so we may as-
sume that these matrix elements have opposite sign.
This also follows from Eq. (7) for φi = φf = 0 (no
isospin mixing). Furthermore, without loss of general-
ity, we may choose the sign of one matrix element, and
we take M(+1/2, 1, 1) and −M(−1/2, 1, 1) positive. We
still are left with 23 = 8 possible choices of the signs of
M(1/2, 1, 2), M(+1/2, 2, 1) and M(+3/2, 1, 1). A con-
venient way to run through all eight possibilities is the
following. We can always adopt a convention in Eq. (4)
such that cosφi, sin φi, cosφf , and sinφf are positive
which corresponds to the domains 0 ≤ φi ≤ π/2 and

0 ≤ φf ≤ π/2. A change of sign of M(+1/2, 1, 2) in
Eq. (7) is equivalent to the substitution φf 7→ π−φf . Sim-
ilarly, changing the sign of M(+1/2, 2, 1) is equivalent to
φi 7→ π − φi. Finally, M(+3/2, 1, 1) 7→ −M(+3/2, 1, 1)
corresponds to either φi 7→ φi + π or φf 7→ φf + π.
We, therefore, conclude that the entire set of solutions is
scanned if 0 ≤ φi ≤ π and 0 ≤ φf ≤ 2π or if 0 ≤ φi ≤ 2π
and 0 ≤ φf ≤ π. Beyond these boundaries, solutions
will repeat themselves. If, as is expected, | sin φi| and
| sinφf | are small, it is more convenient to scan the do-
main −π/2 ≤ φi ≤ π/2 and −π/2 ≤ φf ≤ 3π/2. In
this convention there are two physical regions, either
(φi, φf) ≈ (0, 0) or (φi, φf) ≈ (0, π).

From an examination of the theoretical background to
this problem, it is clear that at least five B(E1) values
are required to assess the magnitude of the isospin mix-
ing and six B(E1) values to fix the mixing angles without
ambiguity. The present work focusses on the A = 31 and
A = 35 cases. In the former example, a B(E1) value is
known for the 7/2− → 5/2+ transition in 31P from a pre-
vious lifetime measurement [19], but lifetimes were only
known for a few low-lying states in 31S. The motivation
of the present experimental work, therefore, was to ob-
tain lifetimes for levels in 31S in order to extract B(E1)
values for the transitions of interest.

III. LIFETIME MEASUREMENTS FOR THE
A=31 MIRROR NUCLEI

Lifetimes of excited states in 31S have been obtained
in the present work using the Doppler Shift Attenuation
Method (DSAM). An earlier study of the mirror nuclei,
31S and 31P used the 20Ne+12C reaction [4]. While it
would have been desirable to repeat this reaction, which
was known to give a good population of the 7/2− state
of interest, it was found that it was difficult to get a
reliable adhesion between a carbon foil and a thick tar-
get backing. It was, therefore, decided to change to the
16O+16O reaction and make use of metal oxide on metal
targets. The Tandem accelerator from the ATLAS fa-
cility at Argonne National Laboratory accelerated a 16O
beam to an energy of 29 MeV. The beam bombarded a
530 µg/cm2-thick target of nickel monoxide on a back-
ing of 3.5 mg/cm2 of nickel. The resulting gamma ra-
diation was detected using the Gammasphere array [15]
consisting of 100 high-purity germanium detectors. In
this array, there are 17 different angular ring positions



which could be used to obtain DSAM lineshapes. The γ-
ray coincidence data were sorted into a series of matrices
with γ rays detected in all detectors on one axis and γ
rays detected in a specific ring on the other.

The Monte Carlo DSAM code “lineshape” was em-
ployed to fit the observed lineshapes and determine life-
times [16]. The slowing-down process in the target and
backing was modelled using the shell-corrected stopping
powers of Northcliffe and Schilling [17]. In a DSAM anal-
ysis, the general procedure is to fit the lineshape in angle-
sorted spectra gated by transitions lying above the tran-
sition of interest in order to remove the effect of side-
feeding. The low population of the Tz=1/2 nucleus 31S,
however, meant that it was not possible to gate on transi-
tions above the level of interest when obtaining lineshape
spectra for the decay of the 7/2− level. It was, therefore,
necessary to gate on transitions below and include the
effects of side-feeding. The feeding of the 7/2− level in
31S comes principally from a 1926-keV γ ray de-exciting
a 9/2− state and a 2383-keV γ ray de-exciting an 11/2−

level. In the case of 31P, the nucleus is populated to much
higher spin and the feeding pattern is complex. Ionescu-
Bujor et al.[14] have recently reported lifetimes for some
of these high-lying high spin states which feed the 7/2−

level. In some cases, these exceed 1 ps. Fortunately, these
states do not appear to be populated in 31S in our study
and the 1926 and 2383 keV transitions decay from states
with relatively short lifetimes. Since the population of
levels above appeared negligible, we fit the lineshapes
corresponding to the 1926- and 2383- keV transitions us-
ing lineshape spectra produced by gating below, and ob-
tained effective lifetimes of 270(50) and 200(40) fs for the
9/2− and 11/2− levels, respectively. These are in reason-
able conformity with the lifetimes of the mirror states in
31P which have lifetimes of 55(17) fs and 120(50) fs, re-
spectively. Lineshape spectra for the 1166-keV 7/2− →
5/2+ transition were obtained by summing spectra gated
by the 1249- and 2036-keV transitions. Figure 2 shows
the lineshape of the 1166-keV transition at 70◦, 90◦ and
110◦. Fitting these lineshapes for the 1166-keV tran-
sition, incorporating side-feeding from the two discrete
transitions, led to a lifetime for the 7/2− state in 31S of
0.98(20) ps.

To examine the reliability of the methodology of gating
below the transition of interest, a lifetime was obtained
for the corresponding 7/2− state in 31P which decays by a
1136-keV γ ray for which the lifetime had been previously
measured to be 0.59(3) ps [19]. First, a gate was set on
the 2394-keV transition above the level of interest and
lineshapes corresponding to the 1136-keV transition were
fit. A lifetime of 0.64(13) ps was obtained. Then, by
using the sum of gated spectra of the 2029- and 1266-
keV transitions below the level of interest, the line shape
of 1136-keV transition was fitted with a consideration of
the estimated effective lifetimes contributed by the 2071-,
2365- and 2394-keV transitions. In this case, the lifetime
extracted was 0.71(8) ps, consistent with that obtained
through gating above.

FIG. 2: (color online) Lineshapes for the 1166-keV gamma ray
in 31S shown for 70◦ (top), 90◦ (middle) and 110◦ (bottom).
The data is shown as blue histograms, with the fit obtained by
the lineshape program in brown. The spectra were obtained
by gating on the 1249- and 2036 keV transitions below the γ
ray of interest.

IV. B(E1) TRANSITION STRENGTHS

Having obtained a lifetime for the 7/2− level in 31S,
we are now able to calculate B(E1) transition rates for
the transitions de-exciting both 7/2− states in 31P and
31S (see table I). We are only able to set an upper limit
on the B(E1) strength for the unobserved 2215-keV γ
ray. It should be noted that this ignores possible M2 ad-
mixtures which become more likely as the E1 strength is
attenuated. In any case, the B(E1) strength for the 7/2−

→ 5/2+ transition in 31P exceeds that of the analagous
transition in 31S by at least a factor of forty.

In order to put the present observations in context,
let us return to the case of the A=35 mirror nuclei,
where seemingly the opposite behavior to the A=31 case
is observed: a prominent 7/2− → 5/2+ E1 transition
is observed in the Tz=-1/2 nucleus, 35Ar, whereas this
branch is seemingly very weak in the mirror nucleus,
35Cl. In fact, the measured lifetime for the 7/2− state
in 35Cl indicates that the latter transition has the ex-
tremely weak transition strength of 1.4(3) × 10−8 W.u.



Nucleus Eγ Ii → If B(E1)
(keV) W.u.

31S 1166 7/2− → 5/2+

2 6.4(1.3) × 10−4 W.u.

2215 7/2− → 5/2+
1 <1.9 × 10−6 W.u.

31P 1136 7/2− → 5/2+
2 4.5(8) × 10−4 W.u.

2195 7/2− → 5/2+
1 8.2(6) × 10−5 W.u.

TABLE I: Table of B(E1) transition rates obtained for 31S
from lifetimes measured in the present work and 31P from the
literature. The 2215-keV transition is presently unobserved,
an upper limit on its branching ratio of 2 % is obtained from
previous work [4]. In all cases, the transitions are assumed to
have a negligble M2 component.

This transition also exhibits a significant M2 component
(B(M2)=6.3(37) × 10−3 W.u.) [18]), which is perhaps
not surprising given the extremely small E1 matrix ele-
ment. The lifetime of the 7/2− level in 35Ar is presently
unknown. The approach taken by Ekman et al. was
to assume that the M2 transition from the 7/2− state
has the same transition strength in each case (B(M2) =
0.28 W.u.) [3]. Following this approach, B(E1) for the
1446 keV transition in 35Ar is 3 × 10−5 which is 2000
times larger than the analogous transition in 35Cl. Ek-
man et al. assume that isospin mixing is taking place
and that there are contributions to the matrix elements
diagonal and non-diagonal in T which have similar mag-
nitude (1.5 × 10−5 W.u.), and which cancel in the case
of 35Cl and sum in the case of 35Ar. We note that
this analysis is not as detailed as that presented in the
present work. Moreover, while the analysis by Ekman et

al. appears reasonable qualitatively, it does lead to the
conclusion that the two components diagonal and non-
diagonal in T would have to differ by less than 0.1 %,
which would be an astonishing coincidence. Clearly, a
possible weakness in this analysis may be the assump-
tion that the M2 transitions in the mirror nuclei have
the same strength. Unlike E1 transitions, M2 transitions
have both an isoscalar and an isovector part. Warburton
and Weneser suggest a “quasi-rule” for such transitions
that so long as they are relatively strong, they should be
of near-equal transition strength in conjugate nuclei [8].
However, the M2 transitions in this case are not strong.
Prosser and Harris calculated M2 transition rates for the
A=35 mirror nuclei and predicted that the 7/2− → 3/2+

transition in 35Ar should have B(M2)=0.0032 W.u., com-
pared to B(M2)=0.185 W.u. in 35Cl [18]. If we use
this predicted B(M2) strength for 35Ar, in conjunction
with the M2 branching ratios as measured by Ekman
et al. then we conclude that the 1446-keV transition
would have B(E1)=6.7(20) × 10−7 W.u. This reanalysis
suggests that the two E1 transitions differ in transition
strength by a factor of 50 rather than a factor of 2000
as suggested by Ekman et al.. Both E1 transitions are
seen to be extremely weak cf. B(E1) ≈ 2.5 × 10−7 W.u
for the 5− → 4+ transition in 64Ge [10]. Moreover, the
variation in transition strength between the mirror nu-

clei is now of similar order to that observed in the A=31
mirror pair, albeit it is the Tz=1/2 member which has
the weaker B(E1) strength in A=35. Clearly, it would
be very worthwhile to measure the lifetime of the 7/2−

state in 35Ar to verify the predicted B(M2) value. On the
basis of the predicted B(M2) value, this lifetime should
be around 350 ps.

As discussed above, in order to begin to determine the
level of isospin mixing, we need additional matrix ele-
ments in order to determine the isospin-mixing, we now
require at least three more matrix elements correspond-
ing to T=3/2 → T=1/2, T=1/2 → T=3/2 and T=3/2
→ T=3/2 transitions. For completeness, we review the
available data for both the A = 31 and A = 35 cases.

For the T=3/2 → T=1/2 component, we can make
use of a recent series of detailed (p,γ) studies on 30Si and
34S [22]. These measurements have identified the 1f7/2

isobaric analogue states in both 31P and 35Cl [22]. Their
gamma widths are (1.63(25) eV) and 1.37(20) eV), re-
spectively. These values may be combined with accurate
branching ratios for the 1f7/2 resonance in 31P [21] and
35Cl [18], leading to B(E1) values for the 7/2−, T=3/2
→ 5/2+

1 , T=1/2 transitions of 2.0(3) × 10−4 W.u. in 31P
and 3.3(7) × 10−5 W.u. in 35Cl.

While the 1f7/2 analogue states appear unique, which
leads to a relatively simple extraction of the relevant ma-
trix elements, the situation appears significantly more
complex when we attempt to obtain the T=1/2 → T=3/2
component. In this case, we need to examine 5/2+,
T=3/2 → 7/2−, T=1/2 transitions, but this is not
straightforward since in both 31P and 35Cl, there are a
number of known (p,γ) resonances with Jπ=5/2+. The
question naturally arises, then, as to which resonances
to consider. To first order, we would expect the most
significant isospin mixing to take place between analogue
states. Analogue states should be connected by strong
M1 transitions. In 31P, the first 5/2+, T = 3/2 resonance
is split into two components at 8.032 and 8.105 MeV.
These components have a negliglible gamma branch to
the T=1/2, 7/2− state [23]. There is a second 5/2+ res-
onance split into a further five fine structure components
between 9.009 and 9.131 MeV [24]. These levels have
a more significant branch to T=1/2 7/2− state. If we
sum all of these component gamma branches, we obtain
B(E1) ≈ 3.4 × 10−4 W.u. [24]. While the lower pair of
resonances have a very weak M1 decay to the 5/2+ state
at 2234 keV, the two 5/2+ resonances at 9.067 and 9.116
MeV have strong M1 branches to the 5/2+ state. The
upper set of resonances, therefore, appear the most rele-
vant for determining the required E1 transition strength.
To summarise, then, we have considered only the upper
set of resonances around 9 MeV as the relevant analogue
to the T=1/2, 5/2+ state and used the sum of the E1
branches from this set of states in our analysis. The
T=1/2 → T=3/2 and T=3/2 → T=1/2 matrix elements
in 31P, therefore, appear to be of similar order i.e. B(E1)
∼ 10−4 W.u. Indeed, these are typical values for isovec-
tor E1 transitions.



Following a similar procedure, if we sum the measured
B(E1) strengths for 5/2+ resonances in the 34S(p,γ) re-
action which correspond to states at 8.216, 8.893 and
9.081 MeV in 35Cl, we obtain ≈ 4.3 × 10−3 W.u. [25].
Each of these resonances gives a similar strength to the
total B(E1) probability. The 8.893-MeV resonance has a
strong M1 branch to the 5/2+,T=1/2 state. In this case,
therefore, the T=1/2 → T=3/2 matrix element appears
to considerably exceed the T=3/2 → T=1/2 matrix ele-
ment.

To obtain matrix elements for the T=3/2 → T=3/2
component, we need to turn to the Tz=3/2 nuclei, 35S
and 31Si since in the Tz=1/2 nuclei, it would be difficult
to observe such isoscalar transitions in competition with
transitions to the T=1/2 states. In the case of 35S, we
have an upper limit only for the strength of the 5/2+,
T=3/2 → 7/2−, T=3/2 transition, with B(E1) < 1.5
× 10−3 W.u. The 5/2+ state involved is the analogue of
the upper of the set of 5/2+ resonances in 35Cl, which we
considered when obtaining the T=1/2 → T=3/2 matrix
element.

For 31Si, the situation is more complicated since there
is a measured B(E1) value for the 5/2+, T=3/2 → 7/2−,
T=3/2 transition of 6.0(13) × 10−4 W.u. The 5/2+ state
involved here, though, corresponds to the lower set of
T=3/2, 5/2+ resonances in 31P, which had negligible E1
branches to the T=1/2, 7/2− state, as well as weak M1
transitions to the lowest 5/2+, T=1/2 state. This in-
consistency cautions against the use of this set of values
in any calculation. The extent of our knowledge of rel-
evant B(E1) strengths in the A=31 and 35 systems is
summarised in figure 3.

Using the matrix elements for the A = 31 and A = 35
cases shown in Fig. 3, we can solve relation (7) graphi-
cally. It is important to remember that, in the A = 31
isobars, the results of the analysis will be rendered un-
certain since we do not have information on the relevant
B(E1) value in 31Si. In the A = 35 isobars, on the other
hand, we do not have an experimental matrix element for
the T = 1/2 → T = 1/2 component in 35Ar, for which
we have been forced to rely on scaling from a predicted
B(M2) value [18].

Figure 4 illustrates the allowed values of the isospin
mixing angles φi and φf in the A = 31 nuclei. Since five
B(E1) values are known experimentally, only a relation
between the mixing angles can be established which cor-
responds to a curve in the domain −π/2 ≤ φi ≤ π/2
and −π/2 ≤ φf ≤ 3π/2. In addition, only an upper
limit is known for the B(E1; 7/2− → 5/2+) value in 31S,
and hence consistency with relation (7) is imposed for
the range 0 ≤ B(E1; 7/2− → 5/2+) ≤ 1.9 × 10−6 W.u.
This leads to the two closely-spaced curves in Fig. 4
which meander through the entire allowed domain; the
small region between one curve and its immediately ad-
jacent one defines the mixing angles consistent with (7).
We see from Fig. 4 that none of allowed solutions goes
through the regions with | sin φi,f | < 0.1, which corre-
spond with isospin mixing smaller than 1% in both states.

We conclude that no coherent picture is obtained from
the A = 31 data as regards E1 transitions and isospin
mixing, which is probably due to our inconsistent use of
analogue transitions, as pointed out above.

The situation is more encouraging in the A = 35 nu-
clei. Again, many different values of (φi, φf) are consis-
tent with relation (7), but we may focus our attention on
the regions (φi, φf) ≈ (0, 0) or (φi, φf) ≈ (0, π). A band
of allowed (φi, φf) values going through the former region
is indicated in Fig. 5. The middle line is the solution of
relation (7) with the (largely) experimental matrix ele-
ments M(Tz, k, l) in the A = 35 isobars. The outer lines
are consistent with this solution to within 1σ deviation
where the errors on all B(E1) values have been taken
into account. The sensitivity to the errors on the different
B(E1) values varies strongly. For example, the solution is
largely insensitive to the B(E1; 5/2+, 1/2 → 7/2−, 1/2)
value in 35S, and the currently known upper limit suf-
fices for the present purpose, that is, the error on this
B(E1) value does not contribute significantly to the error
in the (φi, φf) plot. For reducing the latter error, a bet-
ter precision is required for the 7/2−, 1/2 → 5/2+, 1/2
transition in 35Ar, and the 7/2−, 3/2 → 5/2+, 1/2 and
5/2+, 3/2 → 7/2−, 1/2 transitions in 35Cl. Moreover, an
additional B(E1) value is needed for pinning down the
mixing angles unambiguously.

V. CONCLUSIONS

In conclusion, we have examined theoretically whether
isospin mixing in bound nuclear levels can be obtained
from consideration of E1 transition strengths in analogue
systems. Five B(E1) values are required to determine a
relation between the mixing angles of the initial and fi-
nal states, while an additional B(E1) value would be re-
quired to determine the mixing of each state individually.
We have obtained a B(E1) value for the 7/2−, 1/2 →
5/2+, 1/2 transition in 31S and collated known B(E1)
values for the A = 31 and A = 35 mirror pairs. A solu-
tion is obtained in the A = 35 case, which is consistent
with less than 1% isospin mixing for both levels, using a
B(E1) value for the 7/2−, 1/2 → 5/2+, 1/2 transition in
35Ar obtained from scaling to a calculated B(M2) value
for a transition from the same 7/2− level. Further work
to determine this matrix element experimentally would
be very valuable in confirming these initial conclusions.
Moreover, measurements of additional matrix elements
in both systems, which would likely involve challenging
measurements perhaps involving radioactive beams, are
clearly desirable to extract the isospin mixing of the in-
dividual states.
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