113 research outputs found
Access to the African Court on Human and Peoples’ Rights: A Case of the Poacher Turned Gamekeeper?
The SOLAS air-sea gas exchange experiment (SAGE) 2004
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating
gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in
high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the
expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and
summary of the main experimental findings. The release site was selected from a pre-voyage desktop
study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the
south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In
common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a
Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange
processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton
bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled
volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with
the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the
gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments.
There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton
within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary
production and column-integrated chlorophyll a concentrations had only doubled relative to the
unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions
totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron
enrichment experiments. An investigation of the factors limiting bloom development considered co-
limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst
incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was
only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition
was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton
growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing
were all considered as factors that prevented significant biomass accumulation. In line with the limited
response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through
the New Zealand Foundation for Research, Science and Technology (FRST) programs
(C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean
Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for
specific collaborations by the US National Science Foundation from grants OCE-0326814
(Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural
Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand
International Science and Technology (ISAT) linkages fund provided additional funding
(Archer and Ziolkowski), and the many collaborator institutions also provided valuable
support
Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure
Primary ciliary dyskinesia (PCD) is an autosomal recessive, genetically heterogeneous disorder characterized by oto-sino-pulmonary disease and situs abnormalities (Kartagener syndrome) due to abnormal structure and/or function of cilia. Most patients currently recognized to have PCD have ultrastructural defects of cilia; however, some patients have clinical manifestations of PCD and low levels of nasal nitric oxide, but normal ultrastructure, including a few patients with biallelic mutations in DNAH11
Psi4
Psi4 is an ab initio electronic structure program providing methods such as Hartree-Fock, density functional theory, configuration interaction, and coupled-cluster theory. The 1.1 release represents a major update meant to automate complex tasks, such as geometry optimization using complete-basis-set extrapolation or focal-point methods. Conversion of the top-level code to a Python module means that Psi4 can now be used in complex workflows alongside other Python tools. Several new features have been added with the aid of libraries providing easy access to techniques such as density fitting, Cholesky decomposition, and Laplace denominators. The build system has been completely rewritten to simplify interoperability with independent, reusable software components for quantum chemistry. Finally, a wide range of new theoretical methods and analyses have been added to the code base, including functional-group and open-shell symmetry adapted perturbation theory, density-fitted coupled cluster with frozen natural orbitals, orbital-optimized perturbation and coupled-cluster methods (e.g., OO-MP2 and OO-LCCD), density-fitted multiconfigurational self-consistent field, density cumulant functional theory, algebraic-diagrammatic construction excited states, improvements to the geometry optimizer, and the "X2C" approach to relativistic corrections, among many other improvements
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Transplant Physicians’ Attitudes on Candidacy for Allogeneic Hematopoietic Cell Transplantation (HCT) in Older Patients: The Need for a Standardized Geriatric Assessment (GA) Tool
Background
Despite improvements in conditioning regimens and supportive care having expanded the curative potential of HCT, underutilization of HCT in older adults persists (Bhatt VR et al, BMT 2017). Therefore, we conducted a survey of transplant physicians (TP) to determine their perceptions of the impact of older age (≥60 years) on HCT candidacy and utilization of tools to gauge candidacy.
Methods
We conducted a 23-item, online cross-sectional survey of adult physicians recruited from the Center for International Blood and Marrow Transplant Research between May and July 2019.
Results
175/770 (22.7%) TP completed the survey; majority of respondents were 41-60 years old, male, and practicing in a teaching hospital. Over 75% were at centers performing ≥50 HCT per year. When considering regimen intensity, most (96%, n=168) had an upper age limit (UAL) for using a myeloablative regimen (MAC), with only 29 physicians (17%) stating they would consider MAC for patients ≥70 years. In contrast, when considering a reduced intensity/non-myeloablative conditioning (RIC/NMA), 8%, (n=13), 54% (n=93), and 20% (n=35) stated that age 70, 75, and 80 years respectively would be the UAL to use this approach, with 18% (n=31) reporting no UAL. TP agreed that Karnofsky Performance Score (KPS) could exclude older pts for HCT, with 39.1% (n=66), 42.6% (n=72), and 11.4% (n=20) requiring KPS of ≥70, 80, and 90, respectively. The majority (n=92, 52.5%) indicated an HCT-comorbidity index threshold for exclusion, mostly ranging from ≥3 to ≥ 5. Almost all (89.7%) endorsed the need for a better health assessment of pre-HCT vulnerabilities to guide candidacy for pts ≥60 with varied assessments being utilized beyond KPS (Figure 1). However, the majority of centers rarely (33.1%) or never (45.7%) utilize a dedicated geriatrician/geriatric-oncologist to assess alloHCT candidates ≥60 yrs. The largest barriers to performing GA included uncertainty about which tools to use, lack of knowledge and training, and lack of appropriate clinical support staff (Figure 2). Approximately half (n=78, 45%) endorsed GA now routinely influences candidacy.
Conclusions
The vast majority of TP will consider RIC/NMA alloHCT for patients ≥70 years. However, there is heterogeneity in assessing candidacy. Incorporation of GA into a standardized and easily applied health assessment tool for risk stratification is an unmet need. The recently opened BMT CTN 1704 may aid in addressing this gap
Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images
Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease
Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients
Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification
- …