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Abstract

Rationale—Primary ciliary dyskinesia (PCD) is an autosomal recessive, genetically
heterogeneous disorder characterized by oto-sino-pulmonary disease and situs abnormalities
(Kartagener syndrome) due to abnormal structure and/or function of cilia. Most patients currently
recognized to have PCD have ultrastructural defects of cilia; however, some patients have clinical
manifestations of PCD and low levels of nasal nitric oxide, but normal ultrastructure, including a
few patients with biallelic mutations in DNAH11.

Reprint requests should be addressed to: Maimoona Zariwala, Ph.D. FACMG The University of North Carolina at Chapel Hill
Department of Pathology and Laboratory Medicine CB# 7248, 7123 Thurston-Bowles Bldg. Chapel Hill, NC 27599-7248 Voice:
(919) 966-7050 FAX: (919) 966-7524 zariwala@med.unc.edu. Corresponding author: Michael R. Knowles, M.D. The University of
North Carolina at Chapel Hill Cystic Fibrosis/Pulmonary Research and Treatment Center School of Medicine CB# 7248, 7123
Thurston-Bowles Bldg. Chapel Hill, NC 27599-7248 Voice: (919) 966-7050 FAX: (919) 966-7524 knowles@med.unc.edu.

At a Glance Commentary: Primary ciliary dyskinesia (PCD) is an autosomal recessive, genetically heterogeneous disorder with oto-
sino-pulmonary disease. Most patients are diagnosed on the basis of ciliary ultrastructural defects. This study identified biallelic
mutations in DNAH11in 22% of 58 unrelated patients with normal ciliary ultrastructure, which validates the concepts of 1) ciliary
dysfunction in the presence of normal ultrastructure, and 2) the use of genetic analysis to facilitate the diagnosis of PCD.
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Objectives—In order to test further for mutant DNAH11 as a cause of PCD, we sequenced
DNAH11 in patients with a PCD clinical phenotype, but no known genetic etiology.

Methods—We sequenced 82 exons and intron/exon junctions in DNAH11 in 163 unrelated
patients with a clinical phenotype of PCD, including those with normal ciliary ultrastructure
(n=58), defects in outer + inner dynein arms (n=76), radial spoke/central pair defects (n=6), and 23
without definitive ultrastructural results, but who had situs inversus (n=17), or bronchiectasis and/
or low nasal nitric oxide (n=6). Additionally, we sequenced DNAH11in 13 patients with isolated
situs abnormalities to see if mutant DAVAH11 could cause situs defects without respiratory disease.

Results—Of the 58 unrelated PCD patients with normal ultrastructure, 13 (22%) had two
(biallelic) mutations in DNAH11I; plus, 2 PCD patients without ultrastructural analysis had
biallelic mutations. All mutations were novel and private. None of the patients with dynein arm or
radial spoke/central pair defects, or isolated situs abnormalities, had mutations in DNAHI11. Of the
35 identified mutant alleles, 24 (69%) were nonsense, insertion/deletion or loss-of-function splice-
site mutations.

Conclusions—Mutations in DNAH11 are a common cause of PCD in patients without ciliary
ultrastructural defects; thus, genetic analysis can be used to ascertain the diagnosis of PCD in this
challenging group of patients.

Keywords
Cilia; Dynein; Kartagener syndrome; Dextrocardia; Heterotaxy

INTRODUCTION

Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous disorder. Defective
ciliary and/or flagellar function underlies the clinical manifestations, which include chronic
oto-sino-pulmonary disease. Situs inversus totalis occurs in ~50% of patients (Kartagener
syndrome) and situs ambiguus occurs in at least 6%.[1-4]

The diagnosis of PCD is important for the initiation of clinical care. The diagnosis largely
relies on demonstration of ciliary ultrastructural defects by transmission electron microscopy
(EM), but this test fails to support the diagnosis of PCD in patients with normal
ultrastructure. Genetic testing holds promise as a diagnostic approach in patients with a
clinical phenotype compatible with PCD, as >30% of PCD can be accounted for by biallelic
mutations in 12 genes.[5-23] Mutations in two genes (DNA11 and DNAHS5) that code for
ciliary outer dynein arm proteins are the most common genetic causes of PCD (18-30% of
PCD),[9, 10, 13, 14] and mutations in the remaining genes are relatively uncommon.

DNAH11 (dynein axonemal heavy chain 11) encodes a ciliary outer dynein arm (ODA)
protein. Mutations in DNABI11 were originally described in a patient with a genetic
diagnosis of cystic fibrosis, but who also had features of PCD, but normal ciliary
ultrastructure.[19] Subsequent reports conclusively demonstrated that mutant DNAHI11
causes PCD in patients with normal ultrastructure.[19] DNAH11-mutant cilia have a
reduced waveform amplitude and hyperkinetic beating pattern.[20, 21] Based on these
findings, a European consensus conference modified the diagnostic algorithm for PCD, and
highlighted the importance of high-speed videomicroscopy analysis to evaluate ciliary beat
pattern.[24]

To estimate the mutation frequency in DNAH11in PCD, we undertook a large study of 163
unrelated PCD patients displaying a variety of ciliary EM findings, including patients with a
compatible PCD phenotype, but without ciliary ultrastructural defects.

Thorax. Author manuscript; available in PMC 2013 August 09.
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MATERIALS AND METHODS

Subjects Evaluation

The study included 195 patients with PCD from 163 unrelated families of which 137 were
simplex families with only one affected, 25 were multiplex families with two or more
affected siblings and a family with 3 affected individuals from an isolated population and 13
unrelated subjects with isolated situs abnormalities (Supplement, Table E1). The majority
were evaluated at the University of North Carolina (n=98) or University Hospital, Freiburg
(n=38). The remaining were evaluated at sites in the Genetic Disorders of Mucociliary
Clearance Consortium and other specialized PCD centers in Europe, Australia and Israel
(see Supplement). Evaluations included medical and family history, physical examination,
spirometry, sputum microbiology, chest radiograph and/or CT scan, and nasal nitric oxide
(nNO) measurement in most patients, as described.[8, 25] The diagnosis of PCD in patients
with a compatible phenotype was assessed by ciliary ultrastructure (see below). When
ciliary ultrastructure by EM analysis or immunofluorescence was normal, a presumptive
diagnosis was made by adjunct tests (ciliary waveform analysis, and/or nNO measurements;
see Supplement).[11-13, 25, 26] Patients with isolated situs abnormalities (n=13) had
normal ciliary ultrastructure and nNO, and no clinical features of PCD (Supplement, Figure
E1). This study was approved by the committee for the protection of the rights of human
subjects at participating institutions, and written consent was obtained.

Ciliary Ultrastructural and Waveform Analysis

Epithelial cells were obtained by nasal curettage from the inferior turbinate, processed for
EM, and >= 20 cilia with adequate images were interpreted at UNC by 3 blinded observers
(JLC, MRK, MWL, and/or SUM), as described.[8, 25, 27, 28] Videomicroscopy was
performed as previously described.[20, 29, 30] (details in Supplement).

Mutation Profiling

DNA was extracted from blood, buccal swabs, or lymphoblastoid cell lines from proband
and available relatives, as described (details in Supplement).[8, 25, 31] For the evaluation of
mutation frequency amongst unrelated families, one patient with PCD per family was used
for the full DNAH11 sequencing and analysis. The majority of sequencing 82 exons and
splice junctions was performed by NHLBI Genotyping and Resequencing Services in Seattle
(http://rsng.nhibi.nih.gov/scripts/index.cfm) using Sanger sequencing. The remainder of
sequencing was performed by Sanger sequencing at UNC (see details and primer sequences
in Supplement, Methods and Table E2). Estimates of allele frequencies for missense variants
were obtained using either direct sequencing or restriction endonuclease digestion
(Supplement, Methods) in at least 104 chromosomes from anonymized non-PCD subjects
(hemophilia patients) of Caucasian ethnicity. Additionally, 1000 Genomes (http://www.
1000genomes.org/), and dbSNP public databases were queried (http://
www.ncbi.nlm.nih.gov/proiects/SNP/).

cDNA Analysis

To determine the effect of splice-site variants on transcripts, RT-PCR was employed, using
RNA from nasal epithelial cells or transformed lymphoblastoid cell lines, as described.[25,
27] (See details and primer sequences in Supplement, Methods and Table E3.)

Thorax. Author manuscript; available in PMC 2013 August 09.
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RESULTS
Clinical Phenotype of Study Subjects
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PCD patients—There were 195 subjects (163 families) with PCD (or presumed PCD),
including 90 males (46%) and 105 females (54%) between the ages of 2 months and 75
years. Parental consanguinity was present in 21 (13%) families. The majority of families
were of Caucasian origin (79%), and remaining families represented a broad mixture of
ethnicities (Supplement, Table El). Situs inversus and situs ambiguus were present in 80
(41%) and 15 (8%) patients, respectively. Most patients had neonatal respiratory distress
(70%), recurrent otitis media (82%), sinusitis (95%), and bronchiectasis (70%) by chest CT
scan (Supplement, Table El). Of the 101 patients who had nNO measured, the values were
low (24.6+22.6 nl/min; mean+SD) compared to values (376124 nl/min; mean£SD) seen in
healthy controls. [24] Other details of the clinical features and nNO levels are available
(Supplement, Table EI). Patients with normal ciliary ultrastructure, either by EM
(Supplement, Figure EI) or immunofluorescence staining techniques, were considered to
have a presumptive diagnosis of PCD, based on a compatible clinical phenotype (including
bronchiectasis in most) and/or situs abnormalities, as well as low levels of nNO and
dyskinetic/hyperkinetic waveform and/or increased beat frequency in videomicroscopy
studies, consistent with previous reports.[20]

Subjects with isolated situs abnormalities—There were 13 unrelated subjects with
situs abnormalities, but no clinical features of PCD, and all who were tested (n=10) had
normal nNO levels. Thus, these 13 subjects were considered to have isolated situs
abnormalities unrelated to PCD (Supplement, Table El). These subjects were included
because mouse models of DNAH11 ortholog [32—-34] were originally reported to have
isolated situs abnormalities without the respiratory phenotype.

Mutation Profiling—There were 58 unrelated patients used from mutation profiling who
had a clinical phenotype, nNO levels, and/or ciliary waveform or situs abnormalities
compatible with PCD, but the diagnosis couid not be confirmed either in the patients or their
affected sibling by demonstration of a defect in ciliary ultrastructure. Of these 58 unrelated
patients with a presumptive diagnosis of PCD, 20 had at least one mutation in DNAH11, and
the clinical demographics, nNO levels, situs status, ciliary phenotype and mutations are
summarized (Tables 1 and 2). Of these 20 patients, 15 had two (biallelic) mutations,
including 3 homozygotes, and 12 compound heterozygotes (Table 1). Seven of the 15
patients with biallelic mutations had an affected sibling with the identical mutations (Table
2). Most of the 15 families with biallelic mutations had a PCD patient with situs
abnormalities (13/15) (Table 2), which probably represents an ascertainment bias. As with
PCD patients with ultrastructural defects, there was an age-related distribution of
bronchiectasis in patients with biallelic mutations. Three of the 6 patients without
bronchiectasis were < 8 years old (Table 2).

We identified 35 mutant alleles, not previously observed.[19-21] These included nonsense
mutations (n=1 1), small insertions-deletions (n=6), splice-site mutations (n=7), and
missense mutations (n=1 1). Except for 3 patients with homozygous mutations, each
mutation appeared only once, which demonstrates extensive allelic heterogeneity (see all 32
unique mutant alleles and their corresponding protein domain in Figure 1 and Supplement,
Table E4). Carrier studies in families showed that mutations were inherited /7 trans, and
segregation analysis was consistent with an autosomal recessive trait. Selected pedigrees
illustrate the segregation analysis (Figure 2), and additional families where segregation
analysis was possible with either biallelic mutations (Supplement, Figure E2) or with only
monoallelic mutation (Supplement, Figure E3) are presented in online Supplement.

Thorax. Author manuscript; available in PMC 2013 August 09.
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cDNA Analysis of Splice-site Mutations—RNA was available for transcript studies
for 6 of the 7 splice-site mutations. Three of these splice mutations (¢.2275-1G>C; c.
4254+5G>T; ¢.7266+1G>A) caused in-frame deletions of exon 14 (131 amino acids), exon
23 (53 amino acids), and exon 44 (44 amino acids), respectively (Table 3, Figure 3).
Additionally, three mutations (c.4726-1G>A, ¢.5778+1G>A; ¢.7914G>C) caused out-of-
frame deletions of exon 27, exons 32-35 and exon 48, respectively, leading to premature
stop signals (Table 3, Figure 3).

Correlation of Genotype with Ultrastructure and Ciliary Waveform—The genetics
of PCD involves locus, allelic, and ultrastructural heterogeneity; thus, we studied patients
with different ciliary EM findings, including patients with normal ultrastructure, but
compatible clinical phenotype. Mutations in DMAH11 were exclusively seen in patients
with a clinical phenotype of PCD and normal ciliary ultrastructure. Each of the 14 patients
(11 families) with biallelic mutations in DNAH11 that were tested by videomicroscopy had
the characteristic hyperkinetic beating pattern and reduced waveform amplitude, as
previously reported (see Table 2 and Supplement, Movies E1 and E2).[20] None of the other
groups carried mutations, including patients with isolated situs abnormalities. In total, we
identified biallelic DNAH11 mutations in 13 (22%) of the 58 unrelated families with
compatible clinical phenotype, low nasal NO and confirmed normal ciliary ultrastructure
and/or abnormal videomicroscopy. Despite full gene (coding region) sequencing, we found
only one mutant allele in 5 patients (4 with confirmed normal ultrastructure), which could
reflect either a second mutation in DAMAH11 (introns or promoter regions, or large indels),
or a heterozygous mutation in a different ciliary gene (which would represent digenic mode
of inheritance), or biallelic mutations in a PCD gene other than DNAH11.

Population Studies—There were 10 unique missense variants, one possible single
nucleotide polymorphism, 2 splice mutations, and one amino-acid deletion that were studied
to examine its role as pathogenic or benign. Due to the nature of sequence based assay,
certain amplicons (exons 33, 44 and 80) harbored splice and nonsense mutations in addition
to variants of interest, and they were interrogated as well. Each of these variants was
identified in only 1 of the 163 unrelated PCD patients tested, and never identified in 13
patients with isolated situs abnormalities. Additionally, these missense variants were not
observed in at least 104 alleles tested in non-PCD individuals, ethnically matched when
possible (ethnically matched controls were not available for 3 subjects). In addition, they
were predicted to be deleterious based on /n-sifico program “Mutation Taster” (http://
neurocore.charite.de/MutationTaster/). Furthermore, none of these missense variants or loss-
of-function or splice mutations were seen in 1000 Genomes http://www.1000genomes.org/
or dbSNP <http://www.nchi.nlm.nih.gov/projects/SNP/> databases, except for having been
listed from this current study in dbSNP. Taken together, these data suggest that these
variants are not benign polymorphisms (Supplement, Table E5).

Polymorphisms and Variants of Unknown Significance—DNAH11 is a large gene,
and we identified 310 novel and/or known polymorphisms. The polymorphisms and
corresponding SNP database number (http://www.ncbi.nlm.nih.gov/SNP/) are available
(Supplement, Table E6). The novel variants that are not present in SNP database were
considered benign, due to high minor allele frequency in the PCD patients (footnotes of
Supplement, Table E6). One rare variant (c.11059A>G; p.K3687E) was seen on only one
allele of a PCD patient with an ODA defect, and was never seen in either control or isolated
situs abnormalities groups. This was a non-synonymous substitution, conserved (80%)
across species, and present at the third last base of exon 67 near the splice-donor site. Due to
the unavailability of RNA, we could not check the effect of this variant on splicing. We
classified this substitution as a variant of uncertain significance, because mutations in
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DNAH11 are seen (otherwise) exclusively in patients with normal ciliary ultrastructure;
plus, a second mutation was not identified, despite full gene sequencing.

Errors in Published Sequence of DNAH11—During analysis of cDNA from nasal
epithelial cells and lymphoblastoid cell lines from two unrelated control subjects, we
observed errors in the ensemble database (http://uswest.ensembl.org/index.html), and
published sequence of DNAH11[19] The last 15 bases of exon 22 (and 5 amino-acid
residues) are not present in the DNAH11 transcript from multiple control subjects (details in
bottom panel of Figure 3B, and Supplement, Figure E4A). These 5 amino acids were
previously shown in the human DNAAH11,[19] but not in other species, which is congruent
with sequence error. Additionally, 6 bases in exon 32 of the ensembl database (and 2 amino-
acid residues) are not present in the DNAH11 transcript from multiple control subjects
(correct cDNA sequence for exons 22 and 32, and multiple sequence alignment in
Supplement, Figure E4), Due to errors in the publicly available sequences, the full-length
DNAH11 will contain 4216 amino-acids and the mutation nomenclature for all the
previously published mutations (and variants/SNPs) will change (see Supplement, Table E7
for mutation nomenclature that corresponds with the current and formerly published
sequenced information).

DISCUSSION

It is challenging to confirm a diagnosis of PCD in patients with a compatible clinical
phenotype, but who do not have hallmark defects in ciliary ultrastructure. Some specialized
centers use nasal NO measurement as an aid to diagnosis. A few centers use
videomicroscopy to evaluate ciliary waveform to confirm the diagnosis, but this assay is
difficult, and limited in availability.

Mutations in DNAH11 have been reported in 4 families where PCD-affected patients have
normal ciliary ultrastructure.[19-21] However, the prevalence of DNAH11 mutations, and
genotype-ciliary phenotype correlations, are not well-defined. In this study, we tested the
hypothesis that mutations in DNAH11 are a relatively common cause of PCD in patients
with normal ciliary ultrastructure. We studied a large number of well-characterized PCD
patients with different ciliary ultrastructural phenotypes to determine the frequency of
DNAH11 mutations in each group.[25] In patients where ciliary ultrastructure was normal,
the clinical phenotype was typical of PCD, including a high prevalence of respiratory
distress in full term neonates, chronic otitis media and sinusitis, productive cough,
bronchiectasis, situs abnormalities, and infertility (Supplement, Table E1). In addition, these
patients had low nNO and/or abnormal immunofluorescence with ciliary antibodies and/or
abnormal ciliary waveform with limited range of motion and hyperkinesis, which are
compatible with PCD (Tables 1 and 2).[20]

We determined that biallelic mutations in DNAH11 are relatively common (22%) in PCD
patients without a defined ciliary ultrastructural defect (Table 1). None of the PCD patients
with ultrastructural defects had mutations in DNAH11. Thus, disease-causing mutations in
DNAH11 appear specific for PCD patients with normal ciliary ultrastructure. It is difficult to
determine the proportion of all PCD patients carrying biallelic mutations in DNAH11, since
the fraction of PCD patients with normal ciliary ultrastructure is not known. However,
several studies, and the experience of our centers, estimate that at least 30% of PCD patients
have normal axonemal ultrastructure [2]; thus, DNAHI1 mutations may occur in ~6—7% of
all PCD patients.

Segregation analysis in families was consistent with #rans allelic inheritance of the mutation
as an autosomal recessive trait (Table 2, Figure 2 and Supplement, Figures E2 and E3).

Thorax. Author manuscript; available in PMC 2013 August 09.
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Pedigree analysis showed horizontal transmission, and carrier analysis showed that parents
carried the mutation, but were clinically unaffected; hence, autosomal dominant inheritance
was ruled out (Supplement, Figure E2). In the 5 patients where a second mutation was not
identified, it is likely that a second mutation in DANAH11 is present in most of these patients,
but not discovered by sequence analysis (e.g., promoter, intronic or large insertions-
deletions).[15] Alternatively, a few of these patients may only be a carrier of a DNAH11
mutation, and the actual biallelic PCD-causing mutations are present in a different gene.
Finally, there might be a heterozygous mutation in another axonemal gene, and (together
with the identified DNAH11 mutation), would represent a digenic mode of inheritance;
however, digenic inheritance has never been reported in PCD.

Of the 20 unrelated patients carrying mutations, there were 35 mutant alleles, including 7
splice-site mutations (Table 1). These splice-site mutations abrogated splicing in all 6 cases
tested, which resulted in shorter DNAH11 transcripts (Table 3, Figure 3). We also
concluded that the p.E117V splice-donor site variant (where RNA was not available) and 10
missense variants were likely disease-causing, because: (a) each variant was seen only once,
and not seen in dbSNP and 1000 genomes databases; (b) variants were absent in control
subjects who were tested; (c) the majority of missense mutations had a loss-of-function
mutation on the frans allele; (d) the amino-acid affected by the missense mutations was
highly conserved across species, and /in-sifico analyses predicted it to be deleterious; and (e)
the majority of missense mutations were in a conserved AAA module or was on a
microtubule binding domain (Table 1 and Figure 1). We also discovered some errors in the
published sequence of DNAH11; thus, the mutation nomenclature needs to be updated,
based on the currently revised sequence (Supplement, Table E7, Figure E4).

The ability to establish (or rule-out) a diagnosis of PCD by a genetic test in patients with a
compatible phenotype and normal ciliary ultrastructure is significant at several levels. For
example, several reports suggest that the vast majority (~ 90%) of patients with PCD have
defined ultrastructural defects.[2, 3, 35, 36] However, this perspective may greatly
underestimate the number of PCD patients with normal ciliary ultrastructure, particularly in
patients with normal situs status. At an individual case level, the importance of being able to
establish (or exclude) PCD by a genetic test is demonstrated by the situation in one of our
families (UNCIOQ1; Figure 2C), where one female patient (#623) had a compatible clinical
phenotype and low levels of nasal NO consistent with PCD, but no situs abnormalities. Her
sister (#627) also had some clinical features of PCD, as did an 8 year old paternal half-sister
(#635). Before genetic testing was possible, we were unable to clarify the diagnosis of PCD
in this family. Subsequently, we defined biallelic nonsense mutations in ODNAH11 in the
proband and the full sibling, but the half-sibling did not carry any mutation.

There are some instructive genotype-phenotype correlations in Chlamydomonas and murine
orthologs of mutant DNAH11. The Chlamydomonas reinharadltii ortholog of DNAHI11 is B-
dynein heavy chain (8-DHC), and Chlamydomonas mutants of B-DHC can assemble outer
arm subunits into the flagellar axoneme, but swimming velocity and/or beat frequency are
reduced.[37-40] In humans, immunofluorescence studies show normal distribution of ODA
proteins (DNAH9 and DNAHS5) in a patient with biallelic DMAH11 mutations.[29] Thus,
mutant DNAHI11 does not cause defective ODA assembly, but causes defective ciliary
function.[2, 20] The mouse ortholog of DNAH11 (Dnahcll) is left-right-dynein (/rd), and
Ird null mice have situs defects.[32, 34] The spontaneously occurring mouse model of
Dnahcl1 (inversus viscerum mutant; /iv/iV) has situs defects and recent work shows these
mice have no detectable ciliary beat frequency, and suffer otitis media and rhinitis, even
though they have normal ciliary ultrastructure.[32, 33,41]

Thorax. Author manuscript; available in PMC 2013 August 09.
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In conclusion, our large scale mutation analysis indicates that biallelic mutations in
DNAH11 occur in 22% of patients with a clinical phenotype of PCD, but normal ciliary
ultrastructure, and is consistent with autosomal recessive mode of inheritance. Transcript
analysis of six splice-site mutations revealed abrogation of normal splicing. These data
clearly establish that clinical disease (PCD) occurs in patients with normal ciliary
ultrastructure. This study also demonstrates that genetic analysis of DAMAH11 can be useful
to assist in the diagnosis of PCD, and supports the concept to search for additional genetic
origins of PCD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic representation of DNAH11 (not to the scale) showing AAA 1-6 domains,
four P-loop, Microtubule binding domain (MTB) and Helix-1 and 2
Positions of the all the mutations are shown.
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Figure 2. Representative pedigr ees showing autosomal recessive mode of inheritance for

DNAH11 mutations

Segregation analysis from the parents, siblings and the extended family members

Page 13

demonstrates that mutations were inherited /n frans (A-D), and there was no bias for gender
or situs status. Additional pedigrees are presented in supplemental data.
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Figure 3. Effect of splice-site mutations on the DNAH11 transcript using Rever se Transcriptase-
polymerase chain reaction (RT-PCR)

(A) Splice-acceptor site mutation in intron 13 (¢.2275-1 G>C) in patient PCD761 led to the
in-frame deletion of exon 14 that consisted of 131 amino-acid residues. (B) Splice-donor site
mutation in intron 23 (c.4254+5G>T) in patient OP406-11:2 led to the in-frame deletion of
exon 23 that consisted of 53 amino-acid residues. (C) Splice-acceptor site mutation in intron
26 (c.4726-1G>A) in patient OP406-11:2 led to out-of-frame deletion of exon 27, and
resulted in a premature stop signal. (D) Splice-donor site mutation in intron 44 (c.
7266+1G>A) in patient PCD 108 led to the in-frame deletion of exon 44 that consisted of 44
amino-acid residues. (E) Splice-donor site mutation in exon 48 (¢.7914G>C) in patient
OP98-11:1 led to out-of-frame deletion of exon 48, and resulted in a premature stop signal.
(F) Splice-donor site mutation in intron 33 (c.5778+1G>A) in patient PCD565 led to out-of-
frame deletion of exons 32-35, and resulted in a premature stop signal. The cDNA was
available only from the carrier parent of the patient PCD565, which was used to check the
transcript. All of the six panels with three electropherograms each shows the genomic
location of the mutation (fgp) with a red arrow and bases underlined, mutant cDNA
transcript (/middle) and wild type transcript (bottorm). Amino-acid residues are italicized and
the protein product due to the out-of frame mutation is shown with the red fonts. Genomic
base change for the mutation is shown with underline. A known single nucleotide
polymorphism (SNP) was observed in OP98-11:1 and its location is shown. Further details
on RT-PCR are shown in Table 3 (primer sequences shown in Supplement, Table E3).

Thorax. Author manuscript; available in PMC 2013 August 09.



Page 15

Knowles et al.

¢3apIIv

TapIv

- umouxun umouxun - e HT88TO L<verss  eex3 [ELLON s W 0-ONN §7Sa0d
- umouxun umouxun - W 55261 0<1y9.6  09%3 [ELUON ss 4 Z9TONN ¥.6a0d
- umouxun umouxun - W XL58Y 1<06952  ¥TX3 eu ss 4 9520NN .11A0d
- umouxun umouxun - Rd X2rred 1<Opee0r  €9x3 [ELLON vs 4 6TONN €€01A0d
- umouxun umouxun - Rd ETXS}LBEOEN VOVVISPIT ETT6 96 X3 [ELUON S v.TONN 86600d
suolreIn |\ snobAzo e H
RN 1857d 1<Oe/eeT  z8xa  ¥ed H6E6TO V<OST8S  ¥E X3 eu IS W 8ZTONN 21800d
eu degez O<l8vT.  vrx3 U ALTTH FLSV0SE 1x3 [eWION IS W T7dO T1I-T7dO
BN Sieer 0<10862T  6.X3  Ied XeeTrd 1<01692T  LLX3 [eULION Is 5€2do &lraeedo
eu VIXSRIZOSYL  VOVVOSUISO v0SET  28X3 U dzzory 0<OY90ZT  ¥L X3 [ELLON ss 4 2eZONN 9211add
L 15e6€d 1<Ov08TT  z.X3  ¥ed XTOETI 1<9T06€ 12 X3 [ELLUION s 4 66TONN £201A2d
e HYSEY V<IT90ET 08X3  Ied LXSILTZ8TA §YSOTH8LIS  gequy [EWION IS W 060NN §9500d
Ied YXSIV9.GT3 sYOT9LLY gz jen 19p8TYTO 99€T3 L<O8HvEeY gz [EWION IS W 907d0 , 111-90vdO
N EXSINGPPYI  WOOVSUIPE €€6ET  28X3  ed XP09ZM §O°OVI6L  gyx3 [ELLION IS W 8640 , 111-86d0
Ied X65ErY L<DG/0ET  08X3 TN 719p9SEY 10019PL9 S906T 08 X3 [EWION VS W LYTONN ,61600d
Ied TXSIVS0rrY OPETZET  18X3 W [9P688T 65LA §O<0TSLee T [EWLON IS 4 9ZTONN 19,.a0d
1ed XL16€3 1<96Z6TT  €2X3 1N Xz802Y 1<Oppz9  1€%3 [ELLION Is 4 TZONN /ST@0d
Ied 19pzered 6L62L sYSOTHOCL  ppaul e OTXSJS90STT LOIpLTSY 9TSy 92 X3 [EWION IS W YTONN ,801d0d
suolreIn |\ snobAzo e H punodwo)
eu Hg88eY V<OEQITT  T.X3 U H888eY V<OEITT  T.X3 eu IS W 0zdO #H11-0edo
e X1y L<ogeer  vgx3  ¥ed XSrrTY L<ogeey vz X3 [EWION S LLTONN ,ceotasd
N X08vTY 1<0geyy  Gzx3  ¥ed X08vTY 1<08epy Gz X3 [EWION ss 4 TOTONN ,€¢9a0d
suoireIn |\ snobAzowoH

Bes  abueys pov-ouluy abueypeseg ix3 S  ebueyo pov-ouluy  (YNG)eBueydeseg  u|x3
W3 ARIID  SNEISSNIS @S BAWINN Ajiwed  BJWINN Jueled

NIH-PA Author Manuscript

44

T alqel

NIH-PA Author Manuscript

rIsaunsAQ Aselj1D Arewid yim sjusited pajejaiun 0z ul suonelnw 7 74 vNd 10 sjieled

NIH-PA Author Manuscript

Thorax. Author manuscript; available in PMC 2013 August 09.



Page 16

Knowles et al.

"€ 9|qeL Ul S|1e18p 88S ‘SuoieINwW als mo__gm%

“Aliwey m:om:_zm:mmcoou

"SUOIIEINW [BI[ILEY O1f3][elq awes A11ed os|e oym sBuljgis pajoalse aney mEm_an_,N

"Allwey ayl 4o apis (Jeusarew) s Jaylow Jo (Jeutared) Jayie) ayl Jayna wody sajebaifias 0} umoys aja|e ueINA
¥

*73 8]qe juswsajddns ur uorrewloyui olydesbowasp _mco_u_vu<t

[eulared = Jed ‘[eUISIRIN = TR ‘UOIIUI/UOXS = Jul/X3 Ad0OS0JOIW U0J103|T = |NT ‘SWe UIBUAP = W ‘a]ge|IeAe 10N = BU ‘SNIJOS SNIS = SS ‘snnBiguie sNIS = S ‘SNSIaAUI SNIIS = |S ‘ajewsq = 4 ‘9[eN = N
suoleINe IqqY

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Thorax. Author manuscript; available in PMC 2013 August 09.



Page 17

sak ou sak sak - - IS 6 UeISeoNe) 8 W 8ZIONN 218a0d
sk eu sk sk - anaupadAy/-sAp 1S BU  URISBONRD T N TvdO T:11-TdO
sak sak sak sak - anaupyiadAu/-sAp IS 'u 12 4 Z:11-5€2d0O
sok sak sak ou - anauniadAy/-sAp IS BU  UBISRONED v 4 Ge2dO J T:11-5€¢d0
sak  saf ou ou LET onauyiadAy/-sAp Ss 291 uelsy Zv 4 222ONN 9211add
sak eu sak sak - - IS 69T  UeISEINED Z 4 66IONN £,01add
sak  soh sak sak zot onauyiadAy/-sAp IS G'€z  Uelseaned L W 06ONN $9500d
sak 'uU 'u sak - anauadAy/-sAp SS ’uU / 4 J ¢:11-907dO
eu eu eu eu - a118uBadAY/-SAp IS BU  ueISEINED T N 90vdO T:11-907dO
sak sak sak 'u - anaupadAy/-sAp SS 'u ST N J ¢11-86d0
sak sak sak ou - anaunyiadAy/-sAp 1S BU  UeISEINED 0z N 86d0O T:11-86d0
sak sak sak sak 6L anauadAy/-sAp VS G'Gz 8 N 61600d
sak sak sak sak - - SS 7'6T uelisy 0T 4 /¥TONN J 816A0d
SO sak sak zst anauyadAy/-sAp IS Gy uelseaned 0 4 92TONN 19,A2d
sak sak sak sak - anaupiadAu/-sAp IS T'Z  uelseane) 49 4 TZONN /STADd
sak ou sak sak - onsuppadAy/-sAp IS 0T e W 80TA0d
soh ou sk ou - - SS yT  ueIseone) YA YIONN 4 907TAod

suoirein |\ snobAzo ewH punodwo)

ou sek sk ou - - IS eu ysppnL 2T W 0z-dO Hﬁ__.omn_o
seh ou sak sak - - IS 9CT s, N y €201A0d
sak ou sak sak - - SS G'¢T  uelseoned % W LLTONN 2207Add
soh ou sk sak - - SS IRz 9z 4 4 £29a0d
sak sak sak sak - anaupadAy/-sAp SS 1’6 UeISEONED 74 4 TOTONN £29d2d

suolreln |\ snobAzowoH

L wioy

ZH) 490
SSNUS  ssxg  BIPDASINO SAMOON  +3+(ZH) one A Ad0oso OIIOAPIA RIS

sneissniis L UIW/IUONU  fipluyig  siAuteby  xes  #Ajiweq  #1ueired aod

Knowles et al.

suoneinw 7THYNG BulAired saijiwe) pajejaiun Qg Jo sainieay Aseljio pue ‘olydeibowap ‘[eatund

¢ ?olqel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Thorax. Author manuscript; available in PMC 2013 August 09.



Page 18

Knowles et al.

[z ‘0€]'zH 0°TF2 L~ pue ‘(QSFuesw) zH §'T¥8Z"L 490 [BWIOU :D,GC

2

“eys Alelj19 ayl o /T [eIsIp ay} ul AjJejnanued
‘AlIAnoR AJel|19 pasealoul Yy spaly Auew sueaw oiaupdadAy ‘e)io ayl Jo eys-piw e Ajfe1oadss ‘uonow jo abues paonpal yim uianed Buireaq a|qixaj-uou sueaw d11auIysAp :onauiadAy/onauisAp

44

‘(parejal atam sjuaired ay Jo sjualed) Ajiwey snosuinbuesuod

t

‘(uorreinw payabiel Joy paisal Ajuo) Buljqis paloaye

1

[sz]'s18lgns Ayfeay 2z wouy pae|najed ‘(QSFueaw) UIW/|u #ZTF9/.E dJoM S[aAS] ONU [ewlou
¥

"2118USAp = sAp ‘ziieH =zH ‘Aouanbaly 1eaq Alel19 =490 yuiq wisy
1IN} ul ssansip Aioyesidsal [eJeU0aN = SQY 08N ‘SISEI08IYou0Ig = SISXg ‘OPIX0 JLINU [eSeN = ONU ‘9]qel[eAe JON = Bu ‘Jewdd = 4 ‘9[IAl = Al ‘SNH|O0S SNIS = SS ‘snnBIqwe SNIS = 'S ‘SNSIaAul SNIS = |S

SuoITeINS IqQ Y

sak ok ou ou - - SS BU  8saueqe S W OONN $¥Sa0d

sak sk sah ou 0vT anaupadAy/-sAp SS Oy  uelseanen 2T 4 Z9TONN ¥16a0d

sahk sk sak sok 6'9 onuppadAy/-sAp SS T'Ze  ueIseaneD G¢ 4 95ZONN ¥/11A0d

soh ou soh sah S0T anaupadAy/-sAp VS 8'ye  UeISEANED 0T 4 B6LIONN €601A0d

sak sk sah ou TL anaupadAy/-sAp SS 7'0,L  UelseaneD 62 N PLTONN 86600d
suoieIn |\ snobAzo e H

snsnuS  ssxg  BIPPWSINO  SAYMOSN  34(ZH) 480 4yto) sneigsniis UIW/IUONU - Koy suihuteby xS #Aiwed  #jusired qod

ane\\ Adoaso Jo1wospip AreliD

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Thorax. Author manuscript; available in PMC 2013 August 09.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Knowles et al.

Table 3

Page 19

Effect of DNAH11 splice mutations on cDNA transcript using Reverse Transcriptase PCR (RT-PCR) in

patients with PCD

Genomic Mutations

cDNA Transcript

Sample#  Intron/Exon Location ,irl?dpéﬁdalr?g?ed Amino- oo RT-PCR Comments
¢.350A>T r.(spl?) Second last base in exon 1 on conserved
OP41-11:1 Exon | (p.E117V) RNA not available canonical splice donor site. Population studies:

PCD761 Intron 13

OP406-11:2 Intron 23 *

OP406-11:2  Intron 26

PCD6537  Intron 33”
PCD108 Intron 44
OP98-11:1 Exon 48

Splice defect?

c.IVS13-1G>C
(c.2275-1G>C)
Splice defect

c.IVS23+5G>T
(c.4254+5G>T)
Splice defect

c.IVS26-1G>A
(c.4726-1G>A)
Splice defect

c.IVS33+1G>A
(c.5778+1G>A)
Splice defect

c.IVS44+1G>A
(c.7266+1G>A)
Splice defect

€.7914G>C
(p-Q2638H)
Splice defect

r.2275_2667del
p.Y759_JE889del

r.4096_4254del
p.E1366_G1418del

r.4726_4817del
p.E1576AfsX4

r.5461_6041del
p.V1821TfsX7

1.7135_7266del
p.T2379_Q2422del

r.7812_7914del
p.W2604X

0/216 control alleles and 1/326 PCD alleles

Inframe deletion of exon 14 consisting of 131
amino-acid residues

Wild type amplification product: 1089 bp
Mutant amplification product: 696 bp

Inframe deletion of exon 23 consisting of
53amino-acid residues

Wild type amplification product: 741 bp
Mutant amplification product: 582 bp

Out-of-frame deletion of exon 27 leading to
premature translation termination signal
Wild type amplification product: 992 bp
Mutant amplification product: 900 bp

Out-of-frame deletion of exons 32-35 leading
to premature translation termination signal
Wild type amplification product: 1013 bp
Mutant amplification product: 432 bp

Inframe deletion of exon 44 consisting of 44
amino-acid residues

Wild type amplification product: 918 bp
Mutant amplification product: 786 bp

Last base in exon 48 on conserved canonical
splice donor site. Out-of-frame deletion of exon
48 leading to premature translation termination
signal

Wild type amplification product: 1090 bp
Mutant amplification product: 987 bp

*
Intron 23 and Intron 33 analysis showed the absence of last 15 bases (5 amino-acid residues) in exon 22 and 6 bases of exon 32 (2 amino-acid
residues) respectively, in multiple controls depicting error in published sequence.

#

RNA from affected individual PCD565 was not available hence cDNA analysis was done on the carrier father (PCD653).
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