110 research outputs found

    MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium

    Get PDF
    Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation

    Prevalence, Distribution, and Impact of Mild Cognitive Impairment in Latin America, China, and India: A 10/66 Population-Based Study

    Get PDF
    A set of cross-sectional surveys carried out in Cuba, Dominican Republic, Peru, Mexico, Venezuela, Puerto Rico, China, and India reveal the prevalence and between-country variation in mild cognitive impairment at a population level

    Response behaviour of native lizards and invading wall lizard to interspecific scent: implications for invasion success

    Get PDF
    The human-assisted movement of species beyond their native range facilitates novel interactions between invaders and native species that can determine whether an introduced species becomes invasive and the nature of any consequences for native communities. Avoiding costly interactions through recognition and avoidance can be compromised by the naïvety of native species to novel invaders and vice versa. We tested this hypothesis using the common wall lizard, Podarcis muralis, and the native lizard species with which it may now interact in Britain (common lizard, Zootoca vivipara, sand lizard, Lacerta agilis) and on Vancouver Island (northern alligator lizard, Elgaria coerulea) by exploring species' responses (tongue flicks, avoidance behaviour) to heterospecific scent cues in controlled experiments. The tongue flick response of P. muralis depended on the different species’ scent, with significantly more tongue flicks directed to E. coerulea scent than the other species and the control. This recognition did not result in any other behavioural response in P. muralis (i.e. attraction, aggression, avoidance). Lacerta agilis showed a strong recognition response to P. muralis scent, with more tongue flicks occurring close to the treatment stimuli than the control and aggressive behaviour directed towards the scent source. Conversely, Z. vivipara spent less time near P. muralis scent cues than the control but its tongue flick rate was higher towards this scent in this reduced time, consistent with an avoidance response. There was no evidence of E. coerulea recognition of P. muralis scent in terms of tongue flicks or time spent near the stimuli, although the native species did show a preference for P. muralis-scented refuges. Our results suggest a variable response of native species to the scent of P. muralis, from an avoidance response by Z. vivipara that mirrors patterns of exclusion observed in the field to direct aggression observed in L. agilis and an ambiguous reaction from E. coerulea which may reflect a diminished response to a cue with a low associated cost. These results have significant implications for the invasive success and potential impacts of introduced P. muralis populations on native lizards

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development
    • …
    corecore