79 research outputs found

    Monolayer-Protected Nanoparticle Film Assemblies as Platforms for Controlling Interfacial and Adsorption Properties in Protein Monolayer Electrochemistry

    Get PDF
    Assembled films of nonaqueous nanoparticles, known as monolayer-protected clusters (MPCs), are investigated as adsorption platforms in protein monolayer electrochemistry (PME), a strategy for studying the electron transfer (ET) of redox proteins. Modified electrodes featuring MPC films assembled with various linking methods, including both electrostatic and covalent mechanisms, are employed to immobilize cytochrome c (cyt c) for electrochemical analysis. The background signal (non-Faradaic current) of these systems is directly related to the structure and composition of the MPC films, including nanoparticle core size, protecting ligand properties, as well as the linking mechanism utilized during assembly. Dithiol-linked films of Au225(C6)75 are identified as optimal films for PME by sufficiently discriminating against detrimental background current and exhibiting interfacial properties that are readily engineered for cyt c adsorption and electroactivity (Faradaic current). Surface concentrations and denaturation rates of adsorbed cyt c are dictated by specific manipulation of the individual MPCs composing the outer layer of the film. The use of specially designed, hydrophilic MPCs as a terminal film layer results in near-ideal cyt c voltammetry, attributed to a high degree of molecular level control of the necessary interfacial interactions and flexibility needed to create a uniform and effective binding of protein across large areas of a substrate. The electrochemical properties of cyt c at MPC films, including ET rate constants that are unaffected by the large ET distance introduced by MPC assemblies, are compared to traditional strategies employing self-assembled monolayers to immobilize cyt c. The incorporation of nanoparticles as protein adsorption platforms has implications for biosensor engineering as well as fundamental biological ET studies

    Electrochemical Characterization of Self-Assembled Monolayers on Gold Substrates Derived from Thermal Decomposition of Monolayer-Protected Cluster Films

    Get PDF
    Networked films of monolayer-protected clusters (MPCs), alkanethiolate-stabilized gold nanoparticles, can be thermally decomposed to form stable gold on glass substrates that are subsequently modified with self-assembled monolayers (SAMs) for use as modified electrodes. Electrochemical assessment of these SAM-modified gold substrates, including double-layer capacitance measurements, linear sweep desorption of the alkanethiolates, and diffusional redox probing, all show that SAMs formed on gold supports formed from thermolysis of MPC films possess substantially higher defect density compared to SAMs formed on traditional evaporated gold. The density of defects in the SAMs on thermolyzed gold is directly related to the strategies used to assemble the MPC film prior to thermolysis. Specifically, gold substrates formed from thermally decomposing MPC films formed with electrostatic bridges between carboxylic acid-modified MPCs and metal ion linkers are particularly sensitive to the degree of metal exposure during the assembly process. While specific metal dependence was observed, metal concentration within the MPC precursor film was determined to be a more significant factor. Specific MPC film linking strategies and pretreatment methods that emphasized lower metal exposure resulted in gold films that supported SAMs of lower defect density. The defect density of a SAM-modified electrode is shown to be critical in certain electrochemical experiments such as protein monolayer electrochemistry of adsorbed cytochrome c. While the thermal decomposition of nanoparticle film assemblies remains a viable and interesting technique for coating both flat and irregular shaped substrates, this study provides electrochemical assessment tools and tactics for determining and controlling SAM defect density on this type of gold structure, a property critical to their effective use in subsequent electrochemical applications

    Bacterial Adaptation to Venom in Snakes and Arachnida

    Get PDF
    Animal venoms are considered sterile sources of antimicrobial compounds with strong membrane-disrupting activity against multidrug-resistant bacteria. However, venomous bite wound infections are common in developing nations. Investigating the envenomation organ and venom microbiota of five snake and two spider species, we observed venom community structures that depend on the host venomous animal species and evidenced recovery of viable microorganisms from black-necked spitting cobra (Naja nigricollis) and Indian ornamental tarantula (Poecilotheria regalis) venoms. Among the bacterial isolates recovered from , we identified two venom-resistant, novel sequence types of Enterococcus faecalis whose genomes feature 16 virulence genes, indicating infectious potential, and 45 additional genes, nearly half of which improve bacterial membrane integrity. Our findings challenge the dogma of venom sterility and indicate an increased primary infection risk in the clinical management of venomous animal bite wounds. Notwithstanding their 3 to 5% mortality, the 2.7 million envenomation-related injuries occurring annually-predominantly across Africa, Asia, and Latin America-are also major causes of morbidity. Venom toxin-damaged tissue will develop infections in some 75% of envenomation victims, with E. faecalis being a common culprit of disease; however, such infections are generally considered to be independent of envenomation. Here, we provide evidence on venom microbiota across snakes and arachnida and report on the convergent evolution mechanisms that can facilitate adaptation to black-necked cobra venom in two independent E. faecalis strains, easily misidentified by biochemical diagnostics. Therefore, since inoculation with viable and virulence gene-harboring bacteria can occur during envenomation, acute infection risk management following envenomation is warranted, particularly for immunocompromised and malnourished victims in resource-limited settings. These results shed light on how bacteria evolve for survival in one of the most extreme environments on Earth and how venomous bites must be also treated for infections

    Gaze following in multiagent contexts: Evidence for a quorum-like principle

    Get PDF
    Research shows that humans spontaneously follow another individual’s gaze. However, little remains known on how they respond when multiple gaze cues diverge across members of a social group. To address this question, we presented participants with displays depicting three (Experiment 1) or five (Experiment 2) agents showing diverging social cues. In a three-person group, one individual looking at the target (33% of the group) was sufficient to elicit gaze-facilitated target responses. With a five-person group, however, three individuals looking at the target (60% of the group) were necessary to produce the same effect. Gaze following in small groups therefore appears to be based on a quorum-like principle, whereby the critical level of social information needed for gaze following is determined by a proportion of consistent social cues scaled as a function of group size. As group size grows, greater agreement is needed to evoke joint attention

    Bologna guidelines for diagnosis and management of adhesive small bowel obstruction (ASBO) : 2017 update of the evidence-based guidelines from the world society of emergency surgery ASBO working group

    Get PDF
    Background: Adhesive small bowel obstruction (ASBO) is a common surgical emergency, causing high morbidity and even some mortality. The adhesions causing such bowel obstructions are typically the footprints of previous abdominal surgical procedures. The present paper presents a revised version of the Bologna guidelines to evidence-based diagnosis and treatment of ASBO. The working group has added paragraphs on prevention of ASBO and special patient groups. Methods: The guideline was written under the auspices of the World Society of Emergency Surgery by the ASBO working group. A systematic literature search was performed prior to the update of the guidelines to identify relevant new papers on epidemiology, diagnosis, and treatment of ASBO. Literature was critically appraised according to an evidence-based guideline development method. Final recommendations were approved by the workgroup, taking into account the level of evidence of the conclusion. Recommendations: Adhesion formation might be reduced by minimally invasive surgical techniques and the use of adhesion barriers. Non-operative treatment is effective in most patients with ASBO. Contraindications for non-operative treatment include peritonitis, strangulation, and ischemia. When the adhesive etiology of obstruction is unsure, or when contraindications for non-operative management might be present, CT is the diagnostic technique of choice. The principles of non-operative treatment are nil per os, naso-gastric, or long-tube decompression, and intravenous supplementation with fluids and electrolytes. When operative treatment is required, a laparoscopic approach may be beneficial for selected cases of simple ASBO. Younger patients have a higher lifetime risk for recurrent ASBO and might therefore benefit from application of adhesion barriers as both primary and secondary prevention. Discussion: This guideline presents recommendations that can be used by surgeons who treat patients with ASBO. Scientific evidence for some aspects of ASBO management is scarce, in particular aspects relating to special patient groups. Results of a randomized trial of laparoscopic versus open surgery for ASBO are awaited.Peer reviewe

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: An intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy

    Get PDF
    BackgroundA 2005 interim analysis of the Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial showed that in patients with severe lower limb ischemia (SLI; rest pain, ulceration, gangrene) due to infrainguinal disease, bypass surgery (BSX)-first and balloon angioplasty (BAP)-first revascularization strategies led to similar short-term clinical outcomes, although BSX was about one-third more expensive and morbidity was higher. We have monitored patients for a further 2.5 years and now report a final intention-to-treat (ITT) analysis of amputation-free survival (AFS) and overall survival (OS).MethodsOf 452 enrolled patients in 27 United Kingdom hospitals, 228 were randomized to a BSX-first and 224 to a BAP-first revascularization strategy. All patients were monitored for 3 years and more than half for >5 years.ResultsAt the end of follow-up, 250 patients were dead (56%), 168 (38%) were alive without amputation, and 30 (7%) were alive with amputation. Four were lost to follow-up. AFS and OS did not differ between randomized treatments during the follow-up. For those patients surviving 2 years from randomization, however, BSX-first revascularization was associated with a reduced hazard ratio (HR) for subsequent AFS of 0.85 (95% confidence interval [CI], 0.5-1.07; P = .108) and for subsequent OS of 0.61 (95% CI, 0.50-0.75; P = .009) in an adjusted, time-dependent Cox proportional hazards model. For those patients who survived for 2 years after randomization, initial randomization to a BSX-first revascularization strategy was associated with an increase in subsequent restricted mean overall survival of 7.3 months (95% CI, 1.2-13.4 months, P = .02) and an increase in restricted mean AFS of 5.9 months (95% CI, 0.2-12.0 months, P = .06) during the subsequent mean follow-up of 3.1 years (range, 1-5.7 years).ConclusionsOverall, there was no significant difference in AFS or OS between the two strategies. However, for those patients who survived for at least 2 years after randomization, a BSX-first revascularization strategy was associated with a significant increase in subsequent OS and a trend towards improved AFS
    • …
    corecore