173 research outputs found
Sensitive and selective amplification of methylated DNA sequences using helper-dependent chain reaction in combination with a methylation-dependent restriction enzyme
We have developed a novel technique for specific
amplification of rare methylated DNA fragments in
a high background of unmethylated sequences that
avoids the need of bisulphite conversion. The
methylation-dependent restriction enzyme GlaI is
used to selectively cut methylated DNA. Then
targeted fragments are tagged using specially
designed ‘helper’ oligonucleotides that are also
used to maintain selection in subsequent amplification
cycles in a process called ‘helper-dependent
chain reaction’. The process uses disabled primers
called ‘drivers’ that can only prime on each cycle if
the helpers recognize specific sequences within
the target amplicon. In this way, selection for the
sequence of interest is maintained throughout the
amplification, preventing amplification of unwanted
sequences. Here we show how the method can be
applied to methylated Septin 9, a promising biomarker
for early diagnosis of colorectal cancer.
The GlaI digestion and subsequent amplification
can all be done in a single tube. A detection sensitivity
of 0.1% methylated DNA in a background of
unmethylated DNA was achieved, which was
similar to the well-established Heavy Methyl
method that requires bisulphite-treated DNA.Funding for open access charge: Commonwealth Scientific
and Industrial Research Organisation (CSIRO), Australia.
National Health & Medical Research Counci
Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay
BACKGROUND: Colorectal cancer (CRC) is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC. METHODOLOGY/PRINCIPAL FINDINGS: Using a PCR assay for analysis of Septin 9 (SEPT9) hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls) and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls). 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48%) and 7/102 controls (7%). In the test study 73/126 CRCs (58%) and 18/183 control samples (10%) were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected) while maintaining 90% specificity (19/183 for controls). Positive rates for plasmas from the other cancers (11/96) and non-cancerous conditions (41/315) were low. The rate of polyp detection (>1 cm) was approximately 20%. CONCLUSIONS/SIGNIFICANCE: Analysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted
Performance of Epigenetic Markers SEPT9 and ALX4 in Plasma for Detection of Colorectal Precancerous Lesions
BACKGROUND: Screening for colorectal cancer (CRC) has shown to reduce cancer-related mortality, however, acceptance and compliance to current programmes are poor. Developing new, more acceptable non-invasive tests for the detection of cancerous and precancerous colorectal lesions would not only allow preselection of individuals for colonoscopy, but may also prevent cancer by removal of precancerous lesions. METHODS: Plasma from 128 individuals (cohort I - exploratory study: 73 cases / 55 controls) was used to test the performance of a single marker, SEPT9, using a real-time quantitative PCR assay. To validate performance of SEPT9, plasma of 76 individuals (cohort II - validation study: 54 cases / 22 controls) was assessed. Additionally, improvement of predictive capability considering SEPT9 and additionally ALX4 methylation was investigated within these patients. RESULTS: In both cohorts combined, methylation of SEPT9 was observed in 9% of controls (3/33), 29% of patients with colorectal precancerous lesions (27/94) and 73% of colorectal cancer patients (24/33). The presence of both SEPT9 and ALX4 markers was analysed in cohort II and was observed in 5% of controls (1/22) and 37% of patients with polyps (18/49). Interestingly, also 3/5 (60%) patients with colorectal cancer were tested positive by the two marker panel in plasma. CONCLUSIONS: While these data confirm the detection rate of SEPT9 as a biomarker for colorectal cancer, they also show that methylated DNA from advanced precancerous colorectal lesions can be detected using a panel of two DNA methylation markers, ALX4 and SEPT9. If confirmed in larger studies these data indicate that screening for colorectal precancerous lesions with a blood-based test may be as feasible as screening for invasive cancer
Control of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA
In this study, we adapted the well known uracil DNA glycosylase (UNG) carry-over prevention system for PCR, and applied it to the analysis of DNA methylation based on sodium bisulfite conversion. As sodium bisulfite treatment converts unmethylated cytosine bases into uracil residues, bisulfite treated DNA is sensitive to UNG treatment. Therefore, UNG cannot be used for carry-over prevention of PCR using bisulfite treated template DNA, as not only contaminating products of previous PCR, but also the actual template will be degraded. We modified the bisulfite treatment procedure and generated DNA containing sulfonated uracil residues. Surprisingly, and in contrast to uracil, 6-sulfonyl uracil containing DNA (SafeBis DNA) is resistant to UNG. We showed that the new procedure removes up to 10 000 copies of contaminating PCR product in a closed PCR vessel without significant loss of analytical or clinical sensitivity of the DNA methylation analysis
Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer
As screening methods for colorectal cancer (CRC) are limited by uptake and adherence, further options are sought. A blood test might increase both, but none has yet been tested in a screening setting
A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation
<p>Abstract</p> <p>Background</p> <p>DNA methylation changes are widely used as early molecular markers in cancer detection. Sensitive detection and classification of rare methylation changes in DNA extracted from circulating body fluids or complex tissue samples is crucial for the understanding of tumor etiology, clinical diagnosis and treatment. In this paper, we describe a combined method to monitor the presence of methylated tumor DNA in an excess of unmethylated background DNA of non-tumorous cells. The method combines heavy methyl-PCR, which favors preferential amplification of methylated marker sequence from bisulfite-treated DNA with a methylation-specific single nucleotide primer extension monitored by ion-pair, reversed-phase, high-performance liquid chromatography separation.</p> <p>Results</p> <p>This combined method allows detection of 14 pg (that is, four to five genomic copies) of methylated chromosomal DNA in a 2000-fold excess (that is, 50 ng) of unmethylated chromosomal background, with an analytical sensitivity of > 90%. We outline a detailed protocol for the combined assay on two examples of known cancer markers (SEPT9 and TMEFF2) and discuss general aspects of assay design and data interpretation. Finally, we provide an application example for rapid testing on tumor methylation in plasma DNA derived from a small cohort of patients with colorectal cancer.</p> <p>Conclusion</p> <p>The method allows unambiguous detection of rare DNA methylation, for example in body fluid or DNA isolates from cells or tissues, with very high sensitivity and accuracy. The application combines standard technologies and can easily be adapted to any target region of interest. It does not require costly reagents and can be used for routine screening of many samples.</p
Genetic and Epigenetic Traits as Biomarkers in Colorectal Cancer
Colorectal cancer is a major health burden, and a leading cause of cancer-related deaths in industrialized countries. The steady improvements in surgery and chemotherapy have improved survival, but the ability to identify high- and low-risk patients is still somewhat poor. Molecular biology has, over the years, given insight into basic principles of colorectal cancer initiation and development. These findings include aberrations increasing risk of tumor development, genetic changes associated with the stepwise progression of the disease, and errors predicting response to a specific treatment. Potential biomarkers in colorectal cancer are extensively studied, and how the molecular aberrations relate to clinical features. Yet, little of this knowledge has been possible to transfer into clinical practice. In this review, an overview of colorectal cancer genetics will be given, as well as how aberrations found in this tumor type are proposed as biomarkers for risk prediction, as diagnostic tools, for prognosis or prediction of treatment outcome
Performance of the colorectal cancer screening marker Sept9 is influenced by age, diabetes and arthritis: a nested case–control study
Long-range epigenetic silencing at 2q14.2 affects most human colorectal cancers and may have application as a non-invasive biomarker of disease
Large chromosomal regions can be suppressed in cancer cells as denoted by hypermethylation of neighbouring CpG islands and downregulation of most genes within the region. We have analysed the extent and prevalence of long-range epigenetic silencing at 2q14.2 (the first and best characterised example of coordinated epigenetic remodelling) and investigated its possible applicability as a non-invasive diagnostic marker of human colorectal cancer using different approaches and biological samples. Hypermethylation of at least one of the CpG islands analysed (EN1, SCTR, INHBB) occurred in most carcinomas (90%), with EN1 methylated in 73 and 40% of carcinomas and adenomas, respectively. Gene suppression was a common phenomenon in all the tumours analysed and affected both methylated and unmethylated genes. Detection of methylated EN1 using bisulfite treatment and melting curve (MC) analysis from stool DNA in patients and controls resulted in a predictive capacity of, 44% sensitivity in positive patients (27% of overall sensitivity) and 97% specificity. We conclude that epigenetic suppression along 2q14.2 is common to most colorectal cancers and the presence of a methylated EN1 CpG island in stool DNA might be used as biomarker of neoplastic disease
Conquering the complex world of human septins: implications for health and disease
Peterson EA and Petty EM. Conquering the complex world of human septins: implications for health and disease.Septins are highly conserved filamentous proteins first characterized in budding yeast and subsequently identified in must eukaryotes. Septins can bind and hydrolyze GTP, which is intrinsically related to their formation of septin hexamers and functional protein interactions. The human septin family is composed of 14 loci, SEPT1-SEPT14 , which encode dozens of different septin proteins. Their central GTPase and polybasic domain regions are highly conserved but they diverge in their N-terminus and/or C-terminus. The mechanism by which the different isoforms are generated is not yet well understood, but one can hypothesize that the use of different promoters and/or alternative splicing could give rise to these variants.Septins perform diverse cellular functions according to tissue expression and their interacting partners. Functions identified to date include cell division, chromosome segregation, protein scaffolding, cellular polarity, motility, membrane dynamics, vesicle trafficking, exocytosis, apoptosis, and DNA damage response. Their expression is tightly regulated to maintain proper filament assembly and normal cellular functions. Alterations of these proteins, by mutation or expression changes, have been associated with a variety of cancers and neurological diseases. The association of septins with cancer results from alterations of expression in solid tumors or translocations in leukemias [mixed lineage leukemia (MLL)]. Expression changes in septins have also been associated with neurological conditions such as Alzheimer's and Parkinson's disease, as well as retinopathies, hepatitis C, spermatogenesis and Listeria infection. Pathogenic mutations of SEPT9 were identified in the autosomal dominant neurological disorder hereditary neuralgic amyotrophy (HNA).Human septin research over the past decade has established their importance in cell biology and human disease. Further functional characterization of septins is crucial to our understanding of their possible diagnostic, prognostic, and therapeutic applications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78622/1/j.1399-0004.2010.01392.x.pd
- …
