45 research outputs found

    Estimation of Distribution Overlap of Urn Models

    Get PDF
    A classical problem in statistics is estimating the expected coverage of a sample, which has had applications in gene expression, microbial ecology, optimization, and even numismatics. Here we consider a related extension of this problem to random samples of two discrete distributions. Specifically, we estimate what we call the dissimilarity probability of a sample, i.e., the probability of a draw from one distribution not being observed in k draws from another distribution. We show our estimator of dissimilarity to be a U-statistic and a uniformly minimum variance unbiased estimator of dissimilarity over the largest appropriate range of k. Furthermore, despite the non-Markovian nature of our estimator when applied sequentially over k, we show it converges uniformly in probability to the dissimilarity parameter, and we present criteria when it is approximately normally distributed and admits a consistent jackknife estimator of its variance. As proof of concept, we analyze V35 16S rRNA data to discern between various microbial environments. Other potential applications concern any situation where dissimilarity of two discrete distributions may be of interest. For instance, in SELEX experiments, each urn could represent a random RNA pool and each draw a possible solution to a particular binding site problem over that pool. The dissimilarity of these pools is then related to the probability of finding binding site solutions in one pool that are absent in the other.Comment: 27 pages, 4 figure

    Hidden Independence in Unstructured Probabilistic Models

    Get PDF
    We describe a novel way to represent the probability distribution of a random binary string as a mixture having a maximally weighted component associated with independent (though not necessarily identically distributed) Bernoulli characters. We refer to this as the latent independent weight of the probabilistic source producing the string, and derive a combinatorial algorithm to compute it. The decomposition we propose may serve as an alternative to the Boolean paradigm of hypothesis testing, or to assess the fraction of uncorrupted samples originating from a source with independent marginal distributions. In this sense, the latent independent weight quantifies the maximal amount of independence contained within a probabilistic source, which, properly speaking, may not have independent marginal distributions

    On Contamination of Symbolic Datasets

    Full text link
    Data taking values on discrete sample spaces are the embodiment of modern biological research. "Omics" experiments produce millions of symbolic outcomes in the form of reads (i.e., DNA sequences of a few dozens to a few hundred nucleotides). Unfortunately, these intrinsically non-numerical datasets are often highly contaminated, and the possible sources of contamination are usually poorly characterized. This contrasts with numerical datasets where Gaussian-type noise is often well-justified. To overcome this hurdle, we introduce the notion of latent weight, which measures the largest expected fraction of samples from a contaminated probabilistic source that conform to a model in a well-structured class of desired models. We examine various properties of latent weights, which we specialize to the class of exchangeable probability distributions. As proof of concept, we analyze DNA methylation data from the 22 human autosome pairs. Contrary to what it is usually assumed, we provide strong evidence that highly specific methylation patterns are overrepresented at some genomic locations when contamination is taken into account.Comment: 18 pages, 4 figures, 1 tabl

    The diameter of random Cayley digraphs of given degree

    Full text link
    We consider random Cayley digraphs of order nn with uniformly distributed generating set of size kk. Specifically, we are interested in the asymptotics of the probability such a Cayley digraph has diameter two as nn\to\infty and k=f(n)k=f(n). We find a sharp phase transition from 0 to 1 at around k=nlognk = \sqrt{n \log n}. In particular, if f(n)f(n) is asymptotically linear in nn, the probability converges exponentially fast to 1.Comment: 11 page

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
    corecore