12 research outputs found

    Describing transverse dynamics and space-time evolution at RHIC in a hydrodynamic model with statistical hadronization

    Full text link
    A hydrodynamic model coupled to the statistical hadronization code Therminator is used to study a set of observables in the soft sector at RHIC. A satisfactory description of the pT-spectra and elliptic flow is obtained, similarly to other hydrodynamic models. With the Gaussian initial conditions the transverse femtoscopic radii are also reproduced, providing a possible solution of the RHIC HBT puzzle.Comment: to appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy

    Get PDF
    Standard cancer treatments involve surgery, radiotherapy, chemotherapy, and immunotherapy. In clinical practice, the respective drugs are applied orally or intravenously leading to their systemic circulation in the whole organism. For chemotherapeutics or immune modulatory agents, severe side effects such as immune depression or autoimmunity can occur. At the same time the intratumoral drug doses are often too low for effective cancer therapy. Since monotherapies frequently cannot cure cancer, due to their synergistic effects multimodal therapy concepts are applied to enhance treatment efficacy. The targeted delivery of drugs to the tumor by employment of functionalized nanoparticles might be a promising solution to overcome these challenges. For multimodal therapy concepts and individualized patient care nanoparticle platforms can be functionalized with compounds from various therapeutic classes (e.g. radiosensitizers, phototoxic drugs, chemotherapeutics, immune modulators). Superparamagnetic iron oxide nanoparticles (SPIONs) as drug transporters can add further functionalities, such as guidance or heating by external magnetic fields (Magnetic Drug Targeting or Magnetic Hyperthermia), and imaging-controlled therapy (Magnetic Resonance Imaging)

    Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy

    Get PDF
    Standard cancer treatments involve surgery, radiotherapy, chemotherapy, and immunotherapy. In clinical practice, the respective drugs are applied orally or intravenously leading to their systemic circulation in the whole organism. For chemotherapeutics or immune modulatory agents, severe side effects such as immune depression or autoimmunity can occur. At the same time the intratumoral drug doses are often too low for effective cancer therapy. Since monotherapies frequently cannot cure cancer, due to their synergistic effects multimodal therapy concepts are applied to enhance treatment efficacy. The targeted delivery of drugs to the tumor by employment of functionalized nanoparticles might be a promising solution to overcome these challenges. For multimodal therapy concepts and individualized patient care nanoparticle platforms can be functionalized with compounds from various therapeutic classes (e.g. radiosensitizers, phototoxic drugs, chemotherapeutics, immune modulators). Superparamagnetic iron oxide nanoparticles (SPIONs) as drug transporters can add further functionalities, such as guidance or heating by external magnetic fields (Magnetic Drug Targeting or Magnetic Hyperthermia), and imaging-controlled therapy (Magnetic Resonance Imaging)

    Effects of a phase transition on HBT correlations in an integrated Boltzmann+Hydrodynamics approach

    Get PDF
    A systematic study of HBT radii of pions, produced in heavy ion collisions in the intermediate energy regime (SPS), from an integrated (3+1)d Boltzmann+hydrodynamics approach is presented. The calculations in this hybrid approach, incorporating an hydrodynamic stage into the Ultra-relativistic Quantum Molecular Dynamics transport model, allow for a comparison of different equations of state retaining the same initial conditions and final freeze-out. The results are also compared to the pure cascade transport model calculations in the context of the available data. Furthermore, the effect of different treatments of the hydrodynamic freeze-out procedure on the HBT radii are investigated. It is found that the HBT radii are essentially insensitive to the details of the freeze-out prescription as long as the final hadronic interactions in the cascade are taken into account. The HBT radii RLR_L and ROR_O and the RO/RSR_O/R_S ratio are sensitive to the EoS that is employed during the hydrodynamic evolution. We conclude that the increased lifetime in case of a phase transition to a QGP (via a Bag Model equation of state) is not supported by the available data.Comment: 7 pages, 5 figures. Accepted by Phys. Lett.

    The research project "Success Conditions for Individual Support With ICT in School" (Gelindi)

    Get PDF
    Der Beitrag stellt die Relevanz und Zielsetzung sowie das Forschungsdesign des BMBF-Forschungsprojekts „Gelingensbedingungen für die individuelle Förderung mit digitalen Medien in der Schule“ (Gelindi) vor. Zudem werden Transferperspektiven skizziert. (DIPF/Orig.)The article presents the relevance and objectives as well as the research design of the BMBF research project “Success Conditions for Individual Support With ICT in School” (Gelindi). In addition, transfer perspectives are outlined. (DIPF/Orig.

    Status and promise of particle interferometry in heavy-ion collisions

    Get PDF
    After five years of running at RHIC, and on the eve of the LHC heavy-ion program, we highlight the status of femtoscopic measurements. We emphasize the role interferometry plays in addressing fundamental questions about the state of matter created in such collisions, and present an enumerated list of measurements, analyses and calculations that are needed to advance the field in the coming years

    Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model

    Full text link
    The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrisations of a chiral SU(3) sigma-omega model. The selfconsistent collective expansion includes the effects of effective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show different types of phase transitions and even a crossover. The influence of the order of the phase transition and of the difference in the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or even a smooth crossover leads to distinctly different HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC

    Hadron production in central nucleus-nucleus collisions at chemical freeze-out

    Full text link
    We analyze the experimental hadron yield ratios for central nucleus-nucleus collisions in terms of thermal model calculations over a broad energy range, sNN\sqrt{s_{NN}}=2.7-200 GeV. The fits of the experimental data with the model calculations provide the thermal parameters, temperature and baryo-chemical potential at chemical freeze-out. We compare our results with the values obtained in other studies and also investigate more technical aspects such as a potential bias in the fits when fitting particle ratios or yields. Using parametrizations of the temperature and baryonic chemical potential as a function of energy, we compare the model calculations with data for a large variety of hadron yield ratios. We provide quantitative predictions for experiments at LHC energy, as well as for the low RHIC energy of 62.4 GeV. The relation of the determined parameters with the QCD phase boundary is discussed.Comment: 38 pages, 25 figures - accepted to Nucl. Phys. A; v2: update fits of 4pi data,update on NA44 data at top SPS, fits at top RHIC without resonances; v3: include fits of absolute yields (appendix). Model calculations and data files available at http://www-linux.gsi.de/~andronic/physics/s/s.htm

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram

    Full text link
    This review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of "massive" quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short range perturbative QCD phenomena (jet physics etc.), toward extended, non perturbative QCD hadron structure, we shall proceed here to systems with dimensions far exceeding the force range: matter in the interior of heavy nuclei, or in neutron stars, and primordial matter in the cosmological era from electro-weak decoupling (10^-12 s) to hadron formation (0.5 10^-5 s). This primordial matter, prior to hadronization, should be deconfined in its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).Comment: 146 pages, 83 figure
    corecore