195 research outputs found

    Excitation functions of proton induced nuclear reactions on natW up to 40 MeV

    Get PDF
    Excitation functions for the production of the 181,182m,182g,183,184g,186Re and 183,184Ta radionuclides from proton bombardment on natural tungsten were measured using the stacked-foil activation technique for the proton energies up to 40 MeV. A new data set has been given for the formation of the investigated radionuclides. Results are in good agreement with the earlier reported experimental data and theoretical calculations based on the ALICE-IPPE code. The thick target integral yields were also deduced from the measured excitation functions. The deduced yield values were compared with the directly measured thick target yield (TTY), and found acceptable agreement. The investigated radionuclide 186Re has remarkable applications in the field of nuclear medicine, whereas the data of 183,184gRe and 183Ta have potential applications in thin layer activation analysis and biomedical tracer studies, respectively.Comment: 21papes, 14 figure

    Selenium uptake by edible plants from enriched peat.

    Get PDF
    As a constituent of selenoproteins, selenium (Se) is considered an essential element for human health.The main way that Se enters the body is via the consumption of vegetables, whose concentration of thiselement depends on soil Se content. We grew cabbage, lettuce, chard and parsley, in peat enriched in Seby means of the additive Selcote Ultra®and Na2SeO3and Na2SeO4. Total Se in plants was determinedby acidic digestion and Se speciation by an enzymatic extraction. Both were measured by ICP/MS. Theconcentration ranges were between 0.1 mg Se kg−1and 30 mg Se kg−1for plants grown in Selcote Ultra®media, and between 0.4 mg Se kg−1and 1606 mg Se kg−1for those grown in peat enriched with Se sodiumsalts. We found Se (IV), Se (VI) and SeMet in all the extracts. Peat fortified with Selcote Ultra®gave slightlyhigher Se concentration than natural content values. For plants grown with selenium sodium salts, Secontent increases with the Se added and part of the inorganic Se was converted mainly to SeMet. A highSe fortification can damage or inhibit plant growth. Cabbage showed the greatest tolerance to Se

    Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize

    Get PDF
    International audienceSelenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (SeIV and SeVI) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L−1 of selenium (SeIV, SeVI, Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility

    How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food

    Get PDF
    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations

    Membrane Stretch-Induced Activation of a TRPM4-Like Nonselective Cation Channel in Cerebral Artery Myocytes

    No full text
    corecore