93 research outputs found

    Facial Mimicry of Spontaneous and Deliberate Duchenne and Non-Duchenne Smiles

    Get PDF
    Increasing evidence suggests that Duchenne (D) smiles may not only occur as a sign of spontaneous enjoyment, but can also be deliberately posed. The aim of this paper was to investigate whether people mimic spontaneous and deliberate D and non-D smiles to a similar extent. Facial EMG responses were recorded while participants viewed short video-clips of each smile category which they had to judge with respect to valence, arousal, and genuineness. In line with previous research, valence and arousal ratings varied significantly as a function of smile type and elicitation condition. However, differences in facial reactions occurred only for smile type (i.e., D and non-D smiles). The findings have important implications for questions relating to the role of facial mimicry in expression understanding and suggest that mimicry may be essential in discriminating among various meanings of smiles

    Modulation of facial mimicry by attitudes

    Full text link
    The current experiment explored the influence of attitudes on facial reactions to emotional faces. The participants’ attitudes (positive, neutral, and negative) towards three types of characters were manipulated by written reports. Afterwards participants saw happy, neutral, and sad facial expressions of the respective characters while their facial muscular reactions (M. Corrugator supercilii and M. Zygomaticus major) were recorded electromyografically. Results revealed facial mimicry reactions to happy and sad faces of positive characters, but less and even incongruent facial muscular reactions to happy and sad faces of negative characters. Overall, the results show that attitudes, formed in a few minutes, and only by reports and not by own experiences, can moderate automatic non-verbal social behavior, i.e. facial mimicry

    Eye contact modulates facial mimicry in 4-month-old infants: an EMG and fNIRS study

    Get PDF
    Mimicry, the tendency to spontaneously and unconsciously copy others' behaviour, plays an important role in social interactions. It facilitates rapport between strangers, and is flexibly modulated by social signals, such as eye contact. However, little is known about the development of this phenomenon in infancy, and it is unknown whether mimicry is modulated by social signals from early in life. Here we addressed this question by presenting 4-month-old infants with videos of models performing facial actions (e.g., mouth opening, eyebrow raising) and hand actions (e.g., hand opening and closing, finger actions) accompanied by direct or averted gaze, while we measured their facial and hand muscle responses using electromyography to obtain an index of mimicry (Experiment 1). In Experiment 2 the infants observed the same stimuli while we used functional near-infrared spectroscopy to investigate the brain regions involved in modulating mimicry by eye contact. We found that 4-month-olds only showed evidence of mimicry when they observed facial actions accompanied by direct gaze. Experiment 2 suggests that this selective facial mimicry may have been associated with activation over posterior superior temporal sulcus. These findings provide the first demonstration of modulation of mimicry by social signals in young human infants, and suggest that mimicry plays an important role in social interactions from early in life. [Abstract copyright: Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

    Observing third-party ostracism enhances facial mimicry in 30-month-olds

    Get PDF
    Mimicry is suggested to be one of the strategies via which we enhance social affiliation. Although recent studies have shown that, like adults, young children selectively mimic the facial actions of in-group over out-group members, it is unknown whether this early mimicry behavior is driven by affiliative motivations. Here we investigated the functional role of facial mimicry in early childhood by testing whether observing third-party ostracism, which has previously been shown to enhance children’s affiliative behaviors, enhances facial mimicry in 30-month-olds. Toddlers were presented with videos in which one shape was ostracized by other shapes or with control videos that did not show any ostracism. Before and after this, the toddlers observed videos of models performing facial actions (e.g., eyebrow raising, mouth opening) while we measured activation over their corresponding facial muscles using electromyography (EMG) to obtain an index of facial mimicry. We also coded the videos of the sessions for overt imitation. We found that toddlers in the ostracism condition showed greater facial mimicry at posttest than toddlers in the control condition, as indicated by both EMG and behavioral coding measures. Although the exact mechanism underlying this result needs to be investigated in future studies, this finding is consistent with social affiliation accounts of mimicry and suggests that mimicry may play a key role in maintaining affiliative bonds when toddlers perceive the risk of social exclusion

    Copying you copying me:Interpersonal motor co-ordination influences automatic imitation

    Get PDF
    Moving in a co-ordinated fashion with another individual changes our behaviour towards them; we tend to like them more, find them more attractive, and are more willing to co-operate with them. It is generally assumed that this effect on behaviour results from alterations in representations of self and others. Specifically, through neurophysiological perception-action matching mechanisms, interpersonal motor co-ordination (IMC) is believed to forge a neural coupling between actor and observer, which serves to blur boundaries in conceptual self-other representations and causes positive views of the self to be projected onto others. An investigation into this potential neural mechanism is lacking, however. Moreover, the specific components of IMC that might influence this mechanism have not yet been specified. In the present study we exploited a robust behavioural phenomenon - automatic imitation - to assess the degree to which IMC influences neural action observation-execution matching mechanisms. This revealed that automatic imitation is reduced when the actions of another individual are perceived to be synchronised in time, but are spatially incongruent, with our own. We interpret our findings as evidence that IMC does indeed exert an effect on neural perception-action matching mechanisms, but this serves to promote better self-other distinction. Our findings demonstrate that further investigation is required to understand the complex relationship between neural perception-action coupling, conceptual self-other representations, and social behaviour

    Motor signatures of emotional reactivity in frontotemporal dementia

    Get PDF
    Automatic motor mimicry is essential to the normal processing of perceived emotion, and disrupted automatic imitation might underpin socio-emotional deficits in neurodegenerative diseases, particularly the frontotemporal dementias. However, the pathophysiology of emotional reactivity in these diseases has not been elucidated. We studied facial electromyographic responses during emotion identification on viewing videos of dynamic facial expressions in 37 patients representing canonical frontotemporal dementia syndromes versus 21 healthy older individuals. Neuroanatomical associations of emotional expression identification accuracy and facial muscle reactivity were assessed using voxel-based morphometry. Controls showed characteristic profiles of automatic imitation, and this response predicted correct emotion identification. Automatic imitation was reduced in the behavioural and right temporal variant groups, while the normal coupling between imitation and correct identification was lost in the right temporal and semantic variant groups. Grey matter correlates of emotion identification and imitation were delineated within a distributed network including primary visual and motor, prefrontal, insular, anterior temporal and temporo-occipital junctional areas, with common involvement of supplementary motor cortex across syndromes. Impaired emotional mimesis may be a core mechanism of disordered emotional signal understanding and reactivity in frontotemporal dementia, with implications for the development of novel physiological biomarkers of socio-emotional dysfunction in these diseases
    corecore