10 research outputs found
GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin
Pogostemon cablin is an important aromatic medicinal herb widely used in the pharmaceutical and perfume industries. However, our understanding of the phytochemical compounds and metabolites within P. cablin remains limited. To our knowledge, no integrated studies have hitherto been conducted on the metabolites of the aerial parts of P. cablin. In this study, twenty-three volatile compounds from the aerial parts of P. cablin were identified by GC-MS, predominantly sesquiterpenes. Quantitative analysis showed the highest level of patchouli alcohol in leaves (24.89 mg/g), which was 9.12 and 6.69-fold higher than in stems and flowers. UHPLC-QTOFMS was used to analyze the non-volatile compounds of leaf, stem and flower tissues. The differences in metabolites between flower and leaf tissues were the largest. Based on 112, 77 and 83 differential metabolites between flower-leaf, flower-stem and leaf-stem, three tissue-specific biomarkers of metabolites were identified, and the differential metabolites were enriched in several KEGG pathways. Furthermore, labeling differential metabolites in the primary and secondary metabolic pathways showed that flowers accumulated more lipids and amino acids, including proline, lysine and tryptophan; the leaves accumulated higher levels of terpenoids, vitamins and flavonoids, and stems contained higher levels of carbohydrate compounds. Based on the role of acetyl coenzyme A, the distribution and possible exchange mechanism of metabolites in leaves, stems and flowers of P. cablin were mapped for the first time, laying the groundwork for future research on the metabolites in P. cablin and their regulatory role
The Effect of Microcrack Length in Silicon Cells on the Potential Induced Degradation Behavior
The presence of microcracks may lead to loss in the module output power and safety hazard of the module. This paper investigated whether the existed microscopic microcracks in cells will facilitate the PID behavior. Cells with different degrees of microcracks were fabricated into small modules to undergo the simulated PID test. The I-V performance and EL images of the modules were characterized before and after the PID test. The obtained results demonstrate that with the increase in the microcracked area or length, the modules would show a more serious PID behavior. The mechanism of this microcrack length-related degradation under high negative bias was proposed
miR-103a-3p Suppresses Cell Proliferation and Invasion by Targeting Tumor Protein D52 in Prostate Cancer
Growing evidence points at an association between microRNAs and tumor development. Although dysregulation of microRNA-103a-3p (miR-103a-3p) in multiple human cancers has been reported, its expression in prostate cancer (PCa) remains unknown and there is currently no research on the relationship between miR-103a-3p and tumor protein D52 (TPD52) in PCa. Our aim in this study was to explore the effect and potential mechanism of miR-103a-3p in PCa. qRT-PCR was performed to detected the level of miR-103a-3p in PCa tissues and cells, and in normal tissues. Colony, wound-healing, invasion, proliferation, and apoptosis assays were performed in search miR-103a-3p effect in PCa. TargetScan was used to predict potential targets of miR-103a-3p. Additionally, dual-luciferase reporter, western blot, and immunofluorescence assays were performed to detected the target gene of miR-103a-3p. Finally, we explore the differences in tumor xenograft experiments between nude mice injected with stably miR-103a-3p expressing cells and those expressing a miR-negative control. Low level of miR-103a-3p was detected in PCa tissues and cells, when compared with normal tissues. Enhancement of miR-103a-3p significantly inhibited migration and invasion of PCa cells, and negatively regulated expression of the oncogenic tumor protein D52 (TPD52) through direct binding to its 3’-UTR. Interestingly, overexpression of TPD52 significantly attenuated the effect of mir-103a-3p on PCa. Our study provides the first evidence that miR-103a-3p directly targets TPD52 and inhibits the proliferation and invasion of PCa. This finding helps clarify the role of mir-103a-3p-TPD52 axis in PCa and may provide new therapeutic targets for the disease
Metagenomic survey of viral diversity obtained from feces of piglets with diarrhea
Pigs are natural host to various zoonotic pathogens including viruses. In this study, we analyzed the viral communities in the feces of 89 piglets with diarrhea under one month old which were collected from six farms in Jiangsu Province of the Eastern China, using the unbiased virus metagenomic method. A total of 89 libraries were constructed, and 46937894 unique sequence reads were generated by Illumina sequencing. Overall, the family Picornaviridae accounted for the majority of the total reads of putative mammalian viruses. Ten novel virus genomes from different family members were discovered, including Parvoviridae (n = 2), Picobirnaviridae (n = 4) and CRESS DNA viruses (n = 4). A large number of phages were identified, which mainly belonged to the order Caudovirales and the family Microviridae. Moreover, some identified viruses were closely related to viruses found in non-porcine hosts, highlighting the potential for cross-species virus dissemination. This study increased our understanding of the fecal virus communities of diarrhea piglets and provided valuable information for virus monitoring and preventing
Comparison of viral communities in the blood, feces and various tissues of wild brown rats (Rattus norvegicus)
Viral diseases caused by new outbreaks of viral infections pose a serious threat to human health. Wild brown rats (Rattus norvegicus), considered one of the world's largest and most widely distributed rodents, are host to various zoonotic pathogens. To further understand the composition of the virus community in wild brown rats and explore new types of potentially pathogenic viruses, viral metagenomics was conducted to investigate blood, feces, and various tissues of wild brown rats captured from Zhenjiang, China. Results indicated that the composition of the virus community in different samples showed significant differences. In blood and tissue samples, members of the Parvoviridae and Anelloviridae form the main body of the virus community. Picornaviridae, Picobirnaviridae, and Astroviridae made up a large proportion of fecal samples. Several novel genome sequences from members of different families, including Anelloviridae, Parvoviridae, and CRESS DNA viruses, were detected in both blood and other samples, suggesting that they have the potential to spread across organs to cause viremia. These viruses included not only strains closely related to human viruses, but also a potential recombinant virus. Multiple dual-segment picornaviruses were obtained from fecal samples, as well as virus sequences from the Astroviridae and Picornaviridae. Phylogenetic analysis showed that these viruses belonged to different genera, with multiple viruses clustered with other animal viruses. Whether they have pathogenicity and the ability to spread across species needs further study
Origin and evolution of qingke barley in Tibet
Tibetan barley (Hordeum vulgare L., qingke) is the principal cereal cultivated on the Tibetan Plateau for at least 3,500 years, but its origin and domestication remain unclear. Here, based on deep-coverage whole-genome and published exome-capture resequencing data for a total of 437 accessions, we show that contemporary qingke is derived from eastern domesticated barley and it is introduced to southern Tibet most likely via north Pakistan, India, and Nepal between 4,500 and 3,500 years ago. The low genetic diversity of qingke suggests Tibet can be excluded as a center of origin or domestication for barley. The rapid decrease in genetic diversity from eastern domesticated barley to qingke can be explained by a founder effect from 4,500 to 2,000 years ago. The haplotypes of the five key domestication genes of barley support a feral or hybridization origin for Tibetan weedy barley and reject the hypothesis of native Tibetan wild barley