54 research outputs found

    Are complementarity effects of species richness on productivity the strongest in species-rich communities?

    Get PDF
    How the relationship between species richness and productivity changes along environmental gradients remains poorly understood. We examined the context dependency of complementarity processes underpinning this relationship (biotic feedbacks, resource partitioning and facilitation) using the framework of Grime's (1973) humped-back model. We considered several scenarios of variation in competition and facilitation along environmental gradients, either monotonic with the most common or intense facilitation at the most abiotically severe end of gradients or nonlinear with the strongest facilitation at intermediate positions along gradients. How competition shifts to facilitation along environmental gradients is a key for determining where the effect of species richness on productivity occurs. Based on the literature, the original Stress Gradient Hypothesis would likely predict that complementarity effects should be the greatest, or the most important, in the most abiotically stressful environments. Alternatively, both the ‘collapse of facilitation’ and the ‘shift back to competition’ scenarios predict that the highest overall complementary effects on productivity, not biomass, would most likely occur at intermediate positions along environmental stress gradients, but this might vary depending on the source of stress. This latter prediction is consistent with a great deal of literature on natural gradients of productivity and species richness. Synthesis. Our predictions illustrate the importance of better understanding the context dependency of complementarity processes and the key role of facilitation along environmental gradients to better focus conservation efforts where ecosystem functioning is more likely to be negatively affected by species loss, in particular in species-rich communities. © 2021 British Ecological Societ

    Habitat preferences and functional traits drive longevity in Himalayan high-mountain plants

    Get PDF
    Plant lifespan has important evolutionary, physiological, and ecological implications related to population persistence, community stability, and resilience to ongoing environmental change impacts. Although biologists have long been puzzled over the extraordinary variation in plant lifespan and its causes, our understanding of interspecific variability in plant lifespan and the key internal and external factors influencing longevity remains limited. Here, we demonstrate the concurrent impacts of environmental, morphological, physiological, and anatomical constraints on interspecific variation in longevity among > 300 vascular dicot plant species naturally occurring at an elevation gradient (2800–6150 m) in the western Himalayas. First, we show that plant longevity (ranging from 1 to 100 years) is largely related to species' habitat preferences. Ecologically stressful habitats such as alpine and subnival host long-lived species, while productive ruderal and wetland habitats contain a higher proportion of shorter-lived species. Second, longevity is influenced by growth form with monocarpic forbs having the shortest lifespan and woody shrubs having the highest. Small-statured cushion plants with compact canopies and deep roots, most found on cold and infertile alpine and subnival soils, had a higher chance of achieving longevity. Third, plant traits reflecting plant adaptations to stress and disturbance affect interspecific differences in plant longevity. We show that longevity and growth are negatively correlated. Slow-growing species are those that have a higher chance of reaching a high age. Finally, higher longevity was associated with high leaf carbon and phosphorus, low root phosphorus and nitrogen, and with large bark-xylem ratio. Our findings suggest that plant longevity in high elevation is intricately determined by a combination of habitat preferences and growth form, as well as the plant growth rate and physiological processes.publishedVersio

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

    Get PDF
    14 páginas.- 4 figuras.- 67 referencias.- The online version contains supplementary material available at https://doi.org/10.1038/s41477-024-01670-7Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.This research was supported by the European Research Council (ERC grant 647038 (BIODESERT) awarded to F.T.M.) and Generalitat Valenciana (CIDEGENT/2018/041). D.J.E. was supported by the Hermon Slade Foundation (HSF21040). J. Ding was supported by the National Natural Science Foundation of China Project (41991232) and the Fundamental Research Funds for the Central Universities of China. M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea Next Generation EU/PRTR and the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. O.S. was supported by US National Science Foundation (Grants DEB 1754106, 20-25166), and Y.L.B.-P. by a Marie Sklodowska-Curie Actions Individual Fellowship (MSCA-1018 IF) within the European Program Horizon 2020 (DRYFUN Project 656035). K.G. and N.B. acknowledge support from the German Federal Ministry of Education and Research (BMBF) SPACES projects OPTIMASS (FKZ: 01LL1302A) and ORYCS (FKZ: FKZ01LL1804A). B.B. was supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology, and M. Bowker by funding from the School of Forestry, Northern Arizona University. C.B. acknowledges funding from the National Natural Science Foundation of China (41971131). D.B. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096), and A. Fajardo support from ANID PIA/BASAL FB 210006 and the Millennium Science Initiative Program NCN2021-050. M.F. and H.E. received funding from Ferdowsi University of Mashhad (grant 39843). A.N. and M.K. acknowledge support from FCT (CEECIND/02453/2018/CP1534/CT0001, SFRH/BD/130274/2017, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), EEA (10/CALL#5), AdaptForGrazing (PRR-C05-i03-I-000035) and LTsER Montado platform (LTER_EU_PT_001) grants. O.V. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096). L.W. was supported by the US National Science Foundation (EAR 1554894). Y.Z. and X.Z. were supported by the National Natural Science Foundation of China (U2003214). H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. The use of any trade, firm or product names does not imply endorsement by any agency, institution or government. Finally, we thank the many people who assisted with field work and the landowners, corporations and national bodies that allowed us access to their land.Peer reviewe
    corecore