23 research outputs found

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Schisandrin B decreases the sensitivity of mitochondria to calcium ion-induced permeability transition and protects against carbon tetrachloride toxicity in mouse livers

    No full text
    Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against carbon tetrachloride (CCI4,) hepatotoxicity in mice. In order to elucidate the molecular mechanism underlying the hepatoprotection afforded by Sch B, the effect of Sch B treatment on the sensitivity of mitochondria to Ca2+-stimulated permeability transition (PT) was investigated in mouse livers under normal and CCl4-intoxicated conditions. CCl4 hepatotoxicity caused an increase in the sensitivity of mitochondria to Ca2+ -stimulated PT in vitro. The enhanced sensitivity to mitochondrial PT was associated with increases in mitochondrial Ca2+ content as well as the extent of reactive oxidant species (ROS) production and cytochrome c release. The hepatoprotection afforded by Sch B pretreatment against CCl4, toxicity was paralleled by the decrease in the sensitivity of hepatic mitochondria to Ca2+ -stimulated PT as well as the attenuations of mitochondrial Ca2+ loading, ROS production and cytochrome c release under CCl4 intoxicated condition. In conclusion, the results suggest that the hepatoprotection afforded by Sch B pretreatment against CCl4 toxicity may be related to the increase in the resistance of hepatic mitochondria to Ca2+ -stimulated PT

    Anti-Inflammatory Effects of a Cordyceps sinensis Mycelium Culture Extract (Cs-4) on Rodent Models of Allergic Rhinitis and Asthma

    No full text
    Allergic rhinitis and asthma are common chronic allergic diseases of the respiratory tract, which are accompanied by immunoglobulin E (IgE)-mediated inflammation and the involvement of type 2 T helper cells, mast cells, and eosinophils. Cordyceps sinensis (Berk.) Sacc is a fungal parasite on the larva of Lepidoptera. It has been considered to be a health-promoting food and, also, one of the best-known herbal remedies for the treatment of airway diseases, such as asthma and lung inflammation. In the present study, we demonstrated the antiallergic rhinitis effect of Cs-4, a water extract prepared from the mycelium culture of Cordyceps sinensis (Berk) Sacc, on ovalbumin (OVA)-induced allergic rhinitis in mice and the anti-asthmatic effect of Cs-4 in a rat model of asthma. Treatment with Cs-4 suppressed the nasal symptoms induced in OVA-sensitized and challenged mice. The inhibition was associated with a reduction in IgE/OVA-IgE and interleukin (IL)-4/IL-13 levels in the nasal fluid. Cs-4 treatment also decreased airway responsiveness and ameliorated the scratching behavior in capsaicin-challenged rats. It also reduced plasma IgE levels, as well as IgE and eosinophil peroxidase levels, in the bronchoalveolar fluid. Cs-4 treatment completely suppressed the increases in IL-4, IL-5, and IL-13 levels in rat lung tissue. In conclusion, our results suggest that Cs-4 has the potential to alleviate immune hypersensitivity reactions in allergic rhinitis and asthma

    Validity and reliability of two alternate versions of the Montreal Cognitive Assessment (Hong Kong version) for screening of Mild Neurocognitive Disorder

    No full text
    <div><p>Objective</p><p>Repeated testing using the Montreal Cognitive Assessment (MoCA) increases risks for practice effects which may bias measurements of cognitive change. The objective of this study is to develop two alternate versions of the MoCA (Hong Kong version; HK-MoCA) and to investigate the validity and reliability of the alternate versions in patients with DSM-5 Mild Neurocognitive Disorder (Mild NCD) and cognitively healthy controls.</p><p>Methods</p><p>Concurrent validity and inter-scale agreement were examined by Pearson correlation of the total scores between the original and alternate versions and the Bland-Altman Method. Criterion validity of the two alternate versions in differentiating patients with Mild NCD was tested using receiver operating characteristic curve (ROC) analysis. One-month test-retest and inter-rater reliability were examined in 20 participants. Internal consistency of the alternate versions was measured by the Cronbach’s α.</p><p>Results</p><p>30 controls (age 73.4 [4.5] years, 60% female) and 30 patients (age 75.4 [5.5] years, 73% female) with Mild NCD were recruited. Both alternate versions significantly correlated with the original version (<i>r</i> = 0.79–0.87, <i>p</i><0.001). Mean differences of 0.17 and -0.40 points were found between the total scores of the alternate with the original versions with a consistent level of agreement observed throughout the range of cognitive abilities. Both alternate versions significantly differentiated patients with Mild NCD from healthy controls (area under ROC 0.922 and 0.724, <i>p</i><0.001) and showed good one-month test-retest reliability (intra-class correlation [ICC] = 0.92 and 0.82) and inter-rater reliability (ICC = 0.99 and 0.87) and high internal consistency (Cronbach α = 0.79 and 0.75).</p><p>Conclusion</p><p>The two alternate versions of the HK-MoCA are useful for Mild NCD screening.</p></div

    ROC curves for HK-MoCA-O, HK-MoCA-A1 and HK-MoCA-A2 in differentiating patients with Mild NCD from healthy controls.

    No full text
    <p>Note that the individual ROC curves are derived from different samples (n = 60 for HK-MoCA-O, n = 30 HK-MoCA-A1 and n = 30 for HK-MoCA-A2 and combined in a single graph as shown here. AUCs are 0.839, <i>p</i><0.001 for MoCA, 0.922, <i>p</i><0.001 for HK-MoCA-A1 and 0.724, <i>p</i><0.05 for HK-MoCA-A2.</p
    corecore