137 research outputs found
Addressing cancer survivors\u27 cardiovascular health using the Automated Heart Health Assessment (AH-HA) EHR tool: Initial protocol and modifications to address COVID-19 challenges
BACKGROUND: The purpose of this paper is to describe the Automated Heart-Health Assessment (AH-HA) study protocol, which demonstrates an agile approach to cancer care delivery research. This study aims to assess the effect of a clinical decision support tool for cancer survivors on cardiovascular health (CVH) discussions, referrals, completed visits with primary care providers and cardiologists, and control of modifiable CVH factors and behaviors. The COVID-19 pandemic has caused widespread disruption to clinical trial accrual and operations. Studies conducted with potentially vulnerable populations, including cancer survivors, must shift towards virtual consent, data collection, and study visits to reduce risk for participants and study staff. Studies examining cancer care delivery innovations may also need to accommodate the increased use of virtual visits.
METHODS/DESIGN: This group-randomized, mixed methods study will recruit 600 cancer survivors from 12 National Cancer Institute Community Oncology Research Program (NCORP) practices. Survivors at intervention sites will use the AH-HA tool with their oncology provider; survivors at usual care sites will complete routine survivorship visits. Outcomes will be measured immediately after the study visit, with follow-up at 6 and 12 months. The study was amended during the COVID-19 pandemic to allow for virtual consent, data collection, and intervention options, with the goal of minimizing participant-staff in-person contact and accommodating virtual survivorship visits.
CONCLUSIONS: Changes to the study protocol and procedures allow important cancer care delivery research to continue safely during the COVID-19 pandemic and give sites and survivors flexibility to conduct study activities in-person or remotely
Historical Temperature Variability Affects Coral Response to Heat Stress
Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions
Regulation of Apoptotic Mediators Reveals Dynamic Responses to Thermal Stress in the Reef Building Coral Acropora millepora
Background: Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts
Assessing the Strength and Effectiveness of Renewable Electricity Feed-In Tariffs in European Union Countries
In the last two decades, feed-in tariffs (FIT) and renewable portfolio standards (RPS) have emerged as two of the most popular policies for supporting renewable electricity (RES-E) generation in the developed world. A few studies have assessed their effectiveness, but most do not account for policy design features and market characteristics that influence policy strength. In this paper, we employ 1992-2008 panel data to conduct the first analysis of the effectiveness of FIT policies in promoting solar photovoltaic (PV) and onshore wind power development in 26 European Union countries. We develop a new indicator for FIT strength that captures variability in tariff size, contract duration, digression rate, electricity price, and electricity generation cost to estimate the resulting return on investment. We then regress this indicator on added RES-E capacity using a fixed effects specification. We find that FIT policies have driven solar PV and onshore wind capacity development in the EU. However, this effect is overstated without controls for country characteristics and may be concealed without accounting for the unique design of each policy. We provide empirical evidence that the interaction of policy design and market dynamics are more important determinants of RES-E development than policy enactment alone
Ï production in pâPb collisions at âsNN=8.16 TeV
Ï production in pâPb interactions is studied at the centre-of-mass energy per nucleonânucleon collision âsNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and â4.46 < ycms < â2.96, down to zero transverse momentum. In this work, results on the Ï(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the Ï(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the Ï(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the Ï(1S). A first measurement of the Ï(3S) has also been performed. Finally, results are compared with previous ALICE measurements in pâPb collisions at âsNN = 5.02 TeV and with theoretical calculations.publishedVersio
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Recommended from our members
United States Bureau of Mines Bulletin 531
From Summary: "To obtain a reliable picture of the anthracite-mine-water problem and to solve that problem, it is necessary to have factual data on the volume and the quality and character of mine water handled by pumping plants in the anthracite region, as well as kinds of pumps utilized and problems concerning their operation. The main conclusion that be drawn from an investigation of drainage practices in the anthracite region is that, although efficient pumping layouts, tunnels for draining active mines, and large-scale surface-drainage facilities for keeping water out of mines are in use, the anthracite industry still is threatened with curtailment, to a major degree, and premature extinction because of the encroachment of water, unless remedial action is undertaken in the vary near future by all interests concerned.
Compound effect of EHD and surface roughness in pool boiling and CHF with R-123
This article is a post-print version of the fianl published article which may be accessed at the link below.Saturated pool boiling of R-123 at 1 bar, including the critical heat flux (CHF), was enhanced by modifying the surface characteristics and applying a high intensity electrostatic field, the latter termed electrohydrodynamic (and abbreviated EHD) enhancement. The heat flux was varied from very low values in the natural convection regime up to CHF. Experiments were performed with increasing and decreasing heat flux to study boiling hysteresis without and with EHD. Boiling occurred on the sand blasted surface of a
cylindrical copper block with embedded electrical heating elements, with standardized surface parameter Pa = 3.5 ÎŒm. The electric field was generated by a potential of 5 kV to 25 kV, applied through a 40 mm diameter circular electrode of ss-304 wire mesh, aperture size 5.1 mm, located at distances of 5 - 60 mm from the surface, with most of the data obtained for 20 mm. The data for the rough surface were compared with earlier data for a smooth surface and indicated a significant increase in the heat transfer rates. EHD produced a further increase in the heat transfer rates, particularly at low heat flux values and near the CHF. Boiling hysteresis was reduced progressively by EHD and eliminated at high field strength.This work was supported by Government of Pakistan under a scholarship programme
- âŠ