56 research outputs found

    Targeted analysis of polymorphic loci from low-coverage shotgun sequence data allows accurate genotyping of HLA genes in historical human populations

    No full text
    The highly polymorphic human leukocyte antigen (HLA) plays a crucial role in adaptive immunity and is associated with various complex diseases. Accurate analysis of HLA genes using ancient DNA (aDNA) data is crucial for understanding their role in human adaptation to pathogens. Here, we describe the TARGT pipeline for targeted analysis of polymorphic loci from low-coverage shotgun sequence data. The pipeline was successfully applied to medieval aDNA samples and validated using both simulated aDNA and modern empirical sequence data from the 1000 Genomes Project. Thus the TARGT pipeline enables accurate analysis of HLA polymorphisms in historical (and modern) human populations

    Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections

    Get PDF
    The nucleus is the most prominent cellular organelle, and its sharp boundaries suggest the compartmentalization of the nucleoplasm from the cytoplasm. However, the recent identification of evolutionarily conserved linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes, a family of macromolecular assemblies that span the double membrane of the nuclear envelope, reveals tight physical connections between the two compartments. Here, we review the structure and evolutionary conservation of SUN and KASH domain–containing proteins, whose interaction within the perinuclear space forms the “nuts and bolts” of LINC complexes. Moreover, we discuss the function of these complexes in nuclear, centrosomal, and chromosome dynamics, and their connection to human disease

    Characterization of lamin Mutation Phenotypes in Drosophila and Comparison to Human Laminopathies

    Get PDF
    Lamins are intermediate filament proteins that make up the nuclear lamina, a matrix underlying the nuclear membrane in all metazoan cells that is important for nuclear form and function. Vertebrate A-type lamins are expressed in differentiating cells, while B-type lamins are expressed ubiquitously. Drosophila has two lamin genes that are expressed in A- and B-type patterns, and it is assumed that similarly expressed lamins perform similar functions. However, Drosophila and vertebrate lamins are not orthologous, and their expression patterns evolved independently. It is therefore of interest to examine the effects of mutations in lamin genes. Mutations in the mammalian lamin A/C gene cause a range of diseases, collectively called laminopathies, that include muscular dystrophies and premature aging disorders. We compared the sequences of lamin genes from different species, and we have characterized larval and adult phenotypes in Drosophila bearing mutations in the lam gene that is expressed in the B-type pattern. Larvae move less and show subtle muscle defects, and surviving lam adults are flightless and walk like aged wild-type flies, suggesting that lam phenotypes might result from neuromuscular defects, premature aging, or both. The resemblance of Drosophila lam phenotypes to human laminopathies suggests that some lamin functions may be performed by differently expressed genes in flies and mammals. Such still-unknown functions thus would not be dependent on lamin gene expression pattern, suggesting the presence of other lamin functions that are expression dependent. Our results illustrate a complex interplay between lamin gene expression and function through evolution

    Yersinia adhesins: an arsenal for infection

    Get PDF
    The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbours three recognised human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, their functions and putative roles in the infection process

    Arsen Trioxid ermöglicht Dosisreduktion von Etoposid in Ewing Sarkom Zelllinien

    No full text
    corecore