18 research outputs found

    Potential impacts of climate and environmental change on the stored water of Lake Victoria Basin and economic implications

    Get PDF
    The changing climatic patterns and increasing human population within the Lake Victoria Basin (LVB), together with overexploitation of water for economic activities call for assessment of water management for the entire basin. This study focused on the analysis of a combination of available in situ climate data, Gravity Recovery and Climate Experiment (GRACE), Tropical Rainfall Measuring Mission (TRMM) observations, and high resolution Regional Climate simulations during recent decade(s) to assess the water storage changes within LVB that may be linked to recent climatic variability/changes and anomalies. We employed trend analysis, principal component analysis (PCA), and temporal/spatial correlations to explore the associations and covariability among LVB stored water, rainfall variability, and large-scale forcings associated with El-Niño/Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). Potential economic impacts of human and climate-induced changes in LVB stored water are also explored.Overall, observed in situ rainfall from lake-shore stations showed a modest increasing trend during the recent decades. The dominant patterns of rainfall data from the TRMM satellite estimates suggest that the spatial and temporal distribution of precipitation have not changed much during the period of 1998–2012 over the basin consistent with in situ observations. However, GRACE-derived water storage changes over LVB indicate an average decline of 38.2 mm/yr for 2003–2006, likely due to the extension of the Owen Fall/Nalubale dam, and an increase of 4.5 mm/yr over 2007–2013, likely due to two massive rainfalls in 2006–2007 and 2010–2011. The temporal correlations between rainfall and ENSO/IOD indices during the study period, based on TRMM and model simulations, suggest significant influence of large-scale forcing on LVB rainfall, and thus stored water. The contributions of ENSO and IOD on the amplitude of TRMM-rainfall and GRACE-derived water storage changes, for the period of 2003–2013, are estimated to be ~2.5 cm and ~1.5 cm, respectively

    Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets

    Get PDF
    Human-mediated biological exchange has had global social and ecological impacts. In subS-aharan Africa, several domestic and commensal animals were introduced from Asia in the pre-modern period; however, the timing and nature of these introductions remain contentious. One model supports introduction to the eastern African coast after the mid-first millennium CE, while another posits introduction dating back to 3000 BCE. These distinct scenarios have implications for understanding the emergence of long-distance maritime connectivity, and the ecological and economic impacts of introduced species. Resolution of this longstanding debate requires new efforts, given the lack of well-dated fauna from high-precision excavations, and ambiguous osteomorphological identifications. We analysed faunal remains from 22 eastern African sites spanning a wide geographic and chronological range, and applied biomolecular techniques to confirm identifications of two Asian taxa: domestic chicken (Gallus gallus) and black rat (Rattus rattus). Our approach included ancient DNA (aDNA) analysis aided by BLAST-based bioinformatics, Zooarchaeology by Mass Spectrometry (ZooMS) collagen fingerprinting, and direct AMS (accelerator mass spectrometry) radiocarbon dating. Our results support a late, mid-first millennium CE introduction of these species. We discuss the implications of our findings for models of biological exchange, and emphasize the applicability of our approach to tropical areas with poor bone preservation

    Earliest evidence for the ivory trade in southern Africa : isotopic and ZooMS analysis of seventh-tenth century AD ivory from KwaZulu-Natal

    Get PDF
    KwaGandaganda, Ndondondwane and Wosi were major Early Farming Community settlements in what is today the KwaZulu-Natal province of South Africa. These sites have yielded, among other remains, abundant evidence of ivory and ivory working dating to the seventh–tenth centuries ad, pre-dating by approximately 200 years the better-known ivory artefacts from sites in the Limpopo River Valley and surrounding regions. We report the results of carbon, nitrogen and strontium isotope analysis to explore the origins and procurement of this ivory, in combination with Zooarchaeology by Mass Spectrometry (ZooMS) to identify the species of animals from which it was derived. All of the ivory studied using ZooMS was elephant, despite the presence of hippopotamus remains on all three sites. Some ivory was probably obtained from elephant herds that lived close to the sites, in the densely wooded river valleys favoured by both elephants and early farmers. Other material came from savannah environments further afield. Ivory found at these three sites was drawn from different catchments, implying a degree of landscape/resource partitioning even at this early stage. These communities clearly invested substantial effort in obtaining ivory from across the region, which speaks to the importance of this commodity in the economy of the time. We suggest that some ivory items were for local use, but that some may have been intended for more distant markets via Indian Ocean trade

    Orbital forcing of glacial/interglacial variations in chemical weathering and silicon cycling within the upper White Nile basin, East Africa: Stable-isotope and biomarker evidence from Lakes Victoria and Edward

    Get PDF
    On Quaternary time scales, the global biogeochemical cycle of silicon is interlocked with the carbon cycle through biotic enhancement of silicate weathering and uptake of dissolved silica by vascular plants and aquatic microalgae (notably diatoms, for which Si is an essential nutrient). Large tropical river systems dominate the export of Si from the continents to the oceans. Here, we investigate variations in Si cycling in the upper White Nile basin over the last 15 ka, using sediment cores from Lakes Victoria and Edward. Coupled measurements of stable O and Si isotopes on diatom separates were used to reconstruct past changes in lake hydrology and Si cycling, while the abundances of lipid biomarkers characteristic of terrestrial/emergent higher plants, submerged/floating aquatic macrophytes and freshwater algae document past ecosystem changes. During the late-glacial to mid-Holocene, 15–5.5 ka BP, orbital forcing greatly enhanced monsoon rainfall, forest cover and chemical weathering. Riverine inputs of dissolved silica from the lake catchments exceeded aquatic demand and may also have had lower Si-isotope values. Since 5.5 ka BP, increasingly dry climates and more open vegetation, reinforced by the spread of agricultural cropland over the last 3–4 ka, have reduced dissolved silica inputs into the lakes. Centennial-to millennial-scale dry episodes are also evident in the isotopic records and merit further investigation

    Pharmaceutical pollution of the world's rivers

    Get PDF
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals

    Drivers and trajectories of land cover change in East Africa : human and environmental interactions from 6000 years ago to present

    No full text
    East African landscapes today are the result of the cumulative effects of climate and land-use change over millennial timescales. In this review, we compile archaeological and palaeoenvironmental data from East Africa to document land-cover change, and environmental, subsistence and land-use transitions, over the past 6000 years. Throughout East Africa there have been a series of relatively rapid and high-magnitude environmental shifts characterised by changing hydrological budgets during the mid- to late Holocene. For example, pronounced environmental shifts that manifested as a marked change in the rainfall amount or seasonality and subsequent hydrological budget throughout East Africa occurred around 4000, 800 and 300 radiocarbon years before present (yr BP). The past 6000 years have also seen numerous shifts in human interactions with East African ecologies. From the mid-Holocene, land use has both diversified and increased exponentially, this has been associated with the arrival of new subsistence systems, crops, migrants and technologies, all giving rise to a sequence of significant phases of land-cover change. The first large-scale human influences began to occur around 4000 yr BP, associated with the introduction of domesticated livestock and the expansion of pastoral communities. The first widespread and intensive forest clearances were associated with the arrival of iron-using early farming communities around 2500 yr BP, particularly in productive and easily-cleared mid-altitudinal areas. Extensive and pervasive land-cover change has been associated with population growth, immigration and movement of people. The expansion of trading routes between the interior and the coast, starting around 1300 years ago and intensifying in the eighteenth and nineteenth centuries CE, was one such process. These caravan routes possibly acted as conduits for spreading New World crops such as maize (Zea mays), tobacco (Nicotiana spp.) and tomatoes (Solanum lycopersicum), although the processes and timings of their introductions remains poorly documented. The introduction of southeast Asian domesticates, especially banana (Musa spp.), rice (Oryza spp.), taro (Colocasia esculenta), and chicken (Gallus gallus), via transoceanic biological transfers around and across the Indian Ocean, from at least around 1300 yr BP, and potentially significantly earlier, also had profound social and ecological consequences across parts of the region. Through an interdisciplinary synthesis of information and metadatasets, we explore the different drivers and directions of changes in land-cover, and the associated environmental histories and interactions with various cultures, technologies, and subsistence strategies through time and across space in East Africa. This review suggests topics for targeted future research that focus on areas and/or time periods where our understanding of the interactions between people, the environment and land-cover change are most contentious and/or poorly resolved. The review also offers a perspective on how knowledge of regional land-use change can be used to inform and provide perspectives on contemporary issues such as climate and ecosystem change models, conservation strategies, and the achievement of nature-based solutions for development purposes
    corecore