105 research outputs found

    Occurrence of testicular microlithiasis in androgen insensitive hypogonadal mice

    Get PDF
    <b>Background</b>: Testicular microliths are calcifications found within the seminiferous tubules. In humans, testicular microlithiasis (TM) has an unknown etiology but may be significantly associated with testicular germ cell tumors. Factors inducing microlith development may also, therefore, act as susceptibility factors for malignant testicular conditions. Studies to identify the mechanisms of microlith development have been hampered by the lack of suitable animal models for TM.<BR/> <b>Methods</b>: This was an observational study of the testicular phenotype of different mouse models. The mouse models were: cryptorchid mice, mice lacking androgen receptors (ARs) on the Sertoli cells (SCARKO), mice with a ubiquitous loss of androgen ARs (ARKO), hypogonadal (hpg) mice which lack circulating gonadotrophins, and hpg mice crossed with SCARKO (hpg.SCARKO) and ARKO (hpg.ARKO) mice.<BR/> <b>Results</b>: Microscopic TM was seen in 94% of hpg.ARKO mice (n=16) and the mean number of microliths per testis was 81 +/- 54. Occasional small microliths were seen in 36% (n=11) of hpg testes (mean 2 +/- 0.5 per testis) and 30% (n=10) of hpg.SCARKO testes (mean 8 +/- 6 per testis). No microliths were seen in cryptorchid, ARKO or SCARKO mice. There was no significant effect of FSH or androgen on TM in hpg.ARKO mice.<BR/> <b>Conclusions</b>: We have identified a mouse model of TM and show that lack of endocrine stimulation is a cause of TM. Importantly, this model will provide a means with which to identify the mechanisms of TM development and the underlying changes in protein and gene expression

    Spermatogenesis and sertoli cell activity in mice lacking Sertoli cell receptors for follicle stimulating hormone and androgen

    Get PDF
    Spermatogenesis in the adult male depends on the action of FSH and androgen. Ablation of either hormone has deleterious effects on Sertoli cell function and the progression of germ cells through spermatogenesis. In this study we generated mice lacking both FSH receptors (FSHRKO) and androgen receptors on the Sertoli cell (SCARKO) to examine how FSH and androgen combine to regulate Sertoli cell function and spermatogenesis. Sertoli cell number in FSHRKO-SCARKO mice was reduced by about 50% but was not significantly different from FSHRKO mice. In contrast, total germ cell number in FSHRKO-SCARKO mice was reduced to 2% of control mice (and 20% of SCARKO mice) due to a failure to progress beyond early meiosis. Measurement of Sertoli cell-specific transcript levels showed that about a third were independent of hormonal action on the Sertoli cell, whereas others were predominantly androgen dependent or showed redundant control by FSH and androgen. Results show that FSH and androgen act through redundant, additive, and synergistic regulation of spermatogenesis and Sertoli cell activity. In addition, the Sertoli cell retains a significant capacity for activity, which is independent of direct hormonal regulation

    The Colocalization Potential of HIV-Specific CD8+ and CD4+ T-Cells is Mediated by Integrin β7 but Not CCR6 and Regulated by Retinoic Acid

    Get PDF
    CD4+ T-cells from gut-associated lymphoid tissues (GALT) are major targets for HIV-1 infection. Recruitment of excess effector CD8+ T-cells in the proximity of target cells is critical for the control of viral replication. Here, we investigated the colocalization potential of HIV-specific CD8+ and CD4+ T-cells into the GALT and explored the role of retinoic acid (RA) in regulating this process in a cohort of HIV-infected subjects with slow disease progression. The expression of the gut-homing molecules integrin β7, CCR6, and CXCR3 was identified as a “signature” for HIV-specific but not CMV-specific CD4+ T-cells thus providing a new explanation for their enhanced permissiveness to infection in vivo. HIV-specific CD8+ T-cells also expressed high levels of integrin β7 and CXCR3; however CCR6 was detected at superior levels on HIV-specific CD4+ versus CD8+ T-cells. All trans RA (ATRA) upregulated the expression of integrin β7 but not CCR6 on HIV-specific T-cells. Together, these results suggest that HIV-specific CD8+ T-cells may colocalize in excess with CD4+ T-cells into the GALT via integrin β7 and CXCR3, but not via CCR6. Considering our previous findings that CCR6+CD4+ T-cells are major cellular targets for HIV-DNA integration in vivo, a limited ability of CD8+ T-cells to migrate in the vicinity of CCR6+CD4+ T-cells may facilitate HIV replication and dissemination at mucosal sites

    Mechanisms of HIV-associated lymphocyte apoptosis: 2010

    Get PDF
    The inevitable decline of CD4T cells in untreated infection with the Human immunodeficiency virus (HIV) is due in large part to apoptosis, one type of programmed cell death. There is accumulating evidence that the accelerated apoptosis of CD4T cells in HIV infection is multifactorial, with direct viral cytotoxicity, signaling events triggered by viral proteins and aberrant immune activation adding to normal immune defense mechanisms to contribute to this phenomenon. Current antiviral treatment strategies generally lead to reduced apoptosis, but this approach may come at the cost of preserving latent viral reservoirs. It is the purpose of this review to provide an update on the current understanding of the role and mechanisms of accelerated apoptosis of T cells in the immunopathogenesis of HIV infection, and to highlight potential ways in which this seemingly deleterious process could be harnessed to not just control, but treat HIV infection

    Cell-specific ablation in the testis:what have we learned?

    Get PDF
    Testicular development and function is the culmination of a complex process of autocrine, paracrine and endocrine interactions between multiple cell types. Dissecting this has classically involved the use of systemic treatments to perturb endocrine function, or more recently, transgenic models to knockout individual genes. However, targeting genes one at a time does not capture the more wide-ranging role of each cell type in its entirety. An often overlooked, but extremely powerful approach to elucidate cellular function is the use of cell ablation strategies, specifically removing one cellular population and examining the resultant impacts on development and function. Cell ablation studies reveal a more holistic overview of cell–cell interactions. This not only identifies important roles for the ablated cell type, which warrant further downstream study, but also, and importantly, reveals functions within the tissue that occur completely independently of the ablated cell type. To date, cell ablation studies in the testis have specifically removed germ cells, Leydig cells, macrophages and recently Sertoli cells. These studies have provided great leaps in understanding not possible via other approaches; as such, cell ablation represents an essential component in the researchers’ tool-kit, and should be viewed as a complement to the more mainstream approaches to advancing our understanding of testis biology. In this review, we summarise the cell ablation models used in the testis, and discuss what each of these have taught us about testis development and function

    Novel Role for p110β PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells

    Get PDF
    We thank Anna-Lena Berg (AstraZeneca, Lund) and Cheryl Scudamore (MRC, Harwell, UK) for histological analysis, Julie Foster (Barts Cancer Institute, London) for CT scans, Johan Swinnen and Frank Claessens (Leuven University, Belgium) for discussion and AR-luciferase reporter plasmids, Florian Guillou (INRA, CNRS, Université de Tours, France) for the AMH-Cre mouse line and Laura Milne (MRC Centre for Reproductive Health, The University of Edinburgh) for technical support. We thank the members of the Cell Signalling group for critical input.International audienceThe organismal roles of the ubiquitously expressed class I PI3K isoform p110β remain largely unknown. Using a new kinase-dead knockin mouse model that mimics constitutive pharmacological inactivation of p110β, we document that full inactivation of p110β leads to embryonic lethality in a substantial fraction of mice. Interestingly, the homozygous p110β kinase-dead mice that survive into adulthood (maximum ~26% on a mixed genetic background) have no apparent phenotypes, other than subfertility in females and complete infertility in males. Systemic inhibition of p110β results in a highly specific blockade in the maturation of spermatogonia to spermatocytes. p110β was previously suggested to signal downstream of the c-kit tyrosine kinase receptor in germ cells to regulate their proliferation and survival. We now report that p110β also plays a germ cell-extrinsic role in the Sertoli cells (SCs) that support the developing sperm, with p110β inactivation dampening expression of the SC-specific Androgen Receptor (AR) target gene Rhox5, a homeobox gene critical for spermatogenesis. All extragonadal androgen-dependent functions remain unaffected by global p110β inactivation. In line with a crucial role for p110β in SCs, selective inactivation of p110β in these cells results in male infertility. Our study is the first documentation of the involvement of a signalling enzyme, PI3K, in the regulation of AR activity during spermatogenesis. This developmental pathway may become active in prostate cancer where p110β and AR have previously been reported to functionally interac

    Sertoli cells maintain leydig cell number and peritubular myoid cell activity in the adult mouse testis

    Get PDF
    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health

    Rôle de la transferrine dans la fonction testiculaire et son contrôle par les gonadotropines

    No full text
    La transferrine (Tf) est présente dans les fluides biologiques, elle a la propriété de lier le fer de façon réversible. Au sein du testicule, les cellules de Sertoli impliquées dans le contrôle de la spermatogénèse, synthétisent la Tf. En vue d'analyser son rôle physiologique dans le fonctionnement testiculaire, 2 approches complémentaires de biologie intégrative sont proposées : la surexpression de Tf et l'invalidation ciblée de son gène dans le testicule. Afin de surexprimer la Tf, un fragment d'ADN humain de 80 kb contenant le gène de la Tf a été micro-injecté dans des embryons de souris. Nous avons recherché l'expression de Tf humaine et analysé les conséquences physiologiques de cette expression chez le mâle. Chez les souris transgéniques âgées le poids des testicules et épididymes, la réserve spermatique et la fonction leydigienne sont affectés. Néanmoins malgré ces dysfonctionnements, les souris sont parfaitement fertiles.Transferrin is a protein secreted principally by the liver to transport iron, but it is also expressed by Sertoli cells of the testis where it could play another role. For that, we have used two approaches of integrated biology. First, we have created transgenic mice that overexpress transferrin. This seems to alter spermatogenesis, because a decrease in the testicular weight and in the spermatozoa produced were observed. Nevertheless mice are fertile. Second, we would to knock-out the transferrin gene specifically in Sertoli cells in using the Cre/lox system. I have created and characterized transgenic mice that express the Cre recombinase only in Sertoli cells. To drive the expression of the Cre gene, we have used the promoter of the anti-Müllerian hormone gene, which is expressed only by Sertoli cells. We intend to breed this Cre mice with loxed transferrin gene mice in some months, to analyse the phenotype of offspring mice.TOURS-BU Sciences Pharmacie (372612104) / SudocSudocFranceF

    Implication des récepteurs de chimiokines dans l'homéostasie des lymphocytes T périphériques dans un contexte normal ou pathologique lié à l'infection par le Virus de l'Immunodéficience Humaine

    No full text
    Ce travail de thèse repose sur la caractérisation, par l étude du profil d expression des récepteurs de chimiokines, de l activation et de la différentiation périphérique des lymphocytes T dans un contexte normal ou pathologique lié à l infection par le Virus de l Immunodéficience Humaine. Dans une première étude, nous avons déterminé le rôle du couple CCR6/CCL20 dans l homéostasie des LT. CCR6 permet de discriminer des populations ayant des capacités de production cytokinique particulière. Ces cellules sont sélectivement éliminées du sang périphérique des patients infectés par le VIH et sont séquestrées dans la rate où elles entrent en apoptose. Une seconde étude a été menée par une analyse transcriptomique de sous-populations lymphocytaires exprimant ou non le marqueur CD57 ches les patients infectés ou non par le VIH. Nous avons mis en évidence que les cellules T CD8 CD57+ sont des cellules effectrices mémoires ayant rencontrées l antigène caractérisées par des potentiels de survie et prolifératifs limités mais ayant des capacités migratoires et d interaction intercellulaire élevéesPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF
    corecore