54 research outputs found

    The role of dynamic hydrogen bond networks in protonation coupled dynamics of retinal proteins

    Get PDF
    Hydrogen bonds (H-bonds) are an essential interaction in membrane proteins. Embedded in complex hydrated lipid bilayers, intramolecular interactions through the means of hydrogen bonding networks are often crucial for the function of the protein. Internal water molecules that occupy stable sites inside the protein, or water molecules that visit transiently from the bulk, can play an important role in shaping local conformational dynamics forming complex networks that bridge regions of the protein via water-mediated hydrogen bonds that can function as wires for the transferring of protons as a part of the protein’s function. For example, the membrane-embedded channelrhodopsins which are found in archaea are proteins that couple light induced isomerization of a retinal chromophore with proton transfer reactions and passive flow of cations through their pore. I contributed to the development of a new algorithm package that features a unique approach to H-bond analyses. I performed analyses of long Molecular Dynamics (MD) trajectories of channelrhodopsin variants embedded in hydrated lipid membranes and large data sets of static structures, to detect and dissect dynamic hydrogen-bond networks. The photocycle of channelrhodopsins begins with absorption and isomerization of the retinal from an all-trans state to a 13-cis state and followed by the deprotonation of the Schiff base. Thus, the retinal is found in the epicenter of the analyses. Through the use of 2-dimensional graphs of the protein H-bond networks I identified protein groups potentially important for the proton transfer activity. Local dynamics are highly affected by point mutations of amino acids important for function. The interior of channelrhodopsin C1C2 hosts extensive networks of protein and H-bonded-water molecules, and a never reported before, network that can bridge transiently the two retinal chromophores in channelrhodopsin dimers. In a recently identified inward proton pump, AntR, I applied centrality measures on MD trajectories of the homology model I generated, to assess the communication of the amino acid residues within the networks. I detected a frequently sampled long water chain that connects the retinal with a candidate proton acceptor, as well as a conserved serine in the vicinity of the retinal chromophore plays a significant role in the connectivity and communication of the H-bond networks upon isomerization. A similar water bridge is sampled in independent simulations of ChR2, where a participant for the proton donor group connects to the 13-cis,15-anti retinal. Proton transfer reactions often take place through certain amino acids, forming patterns. I analyzed H-bond patterns or motifs in large hand-curated datasets of static structures of α-transmembrane helix proteins, organized according to the superfamilies they belong, their function and an alternative classification method. The presence of motifs in TM proteins is tightly related to their families/superfamilies of the host protein and their position along the membrane normal.Wasserstoffbrücken (H-Brücke) sind eine wesentliche Wechselwirkung in Membranproteinen. Eingebettet in komplexe hydratisierte Lipiddoppelschichten sind intramolekulare Wechselwirkungen über Wasserstoffbrückenbindungsnetzwerke oft entscheidend für die Funktion des Proteins. Interne Wassermoleküle, die stabile Stellen im Inneren des Proteins besetzen, oder Wassermoleküle, die vorübergehend aus der Masse zu Besuch kommen, können eine wichtige Rolle bei der Gestaltung der lokalen Konformationsdynamik spielen, indem sie komplexe Netzwerke bilden, die Regionen des Proteins über wasservermittelte Wasserstoffbrückenbindungen überbrücken, die als Drähte für den Transfer von Protonen als Teil der Proteinfunktion funktionieren können. Die in Archaeen vorkommenden, in die Membran eingebetteten Kanalrhodopsine sind beispielsweise Proteine, die die lichtinduzierte Isomerisierung eines Retinachromophors mit Protonentransferreaktionen und dem passiven Fluss von Kationen durch ihre Pore verbinden. Ich habe an der Entwicklung eines neuen Algorithmuspakets mitgewirkt, das einen einzigartigen Ansatz für H-Bindungsanalysen bietet. Ich habe lange Molekulardynamik-Trajektorien von Kanalrhodopsine-Varianten, die in hydratisierte Lipidmembranen eingebettet sind, sowie große Datensätze statischer Strukturen analysiert, um dynamische Wasserstoffbrücken-bindungsnetzwerke zu erkennen und zu zerlegen. Der Photozyklus der Kanalrhodopsine beginnt mit der Absorption und Isomerisierung des Retinals von einem all-trans-Zustand zu einem 13-cis-Zustand, gefolgt von der Deprotonierung der Schiff-Base. Somit steht das Retinal im Mittelpunkt der Analysen. Durch die Verwendung von 2-dimensionalen Graphen der Protein- H-Brückenetzwerke identifizierte ich Proteingruppen, die für die Protonentransferaktivität wichtig sein könnten. Die lokale Dynamik wird durch Punktmutationen der für die Funktion wichtigen Aminosäuren stark beeinflusst. Das Innere von Kanalrhodopsine C1C2 beherbergt ausgedehnte Netzwerke von Protein- und H-Brücke-Wassermolekülen und ein bisher unbekanntes Netzwerk, das die beiden retinalen Chromophore in Kanalrhodopsine-Dimeren vorübergehend überbrücken kann. In einer kürzlich identifizierten Protonenpumpe, AntR, wendete ich Zentralitätsmaße auf MD-Trajektorien des von mir erstellten Homologiemodells an, um die Kommunikation der Aminosäurereste innerhalb der Netzwerke zu bewerten. Ich fand, dass eine häufig gesampelte lange Wasserkette, die das Retinal mit einem Protonenakzeptor verbindet, sowie ein konserviertes Serin in der Nähe des Retinal-Chromophors eine wichtige Rolle bei der Konnektivität und Kommunikation der H-Brückesnetzwerke bei der Isomerisierung spielt. Eine ähnliche Wasserbrücke ist in unabhängigen Simulationen von Kanalrhodopsine-2 zu finden, wo ein Teilnehmer für die Protonendonorgruppe mit dem 13-cis,15-anti-Retinal verbunden ist. Protonenübertragungsreaktionen finden oft über bestimmte Aminosäuren statt und bilden Muster. Ich analysierte H-Brückemuster oder -motive in großen, von Hand kuratierten Datensätzen statischer Strukturen von α-Transmembranhelix-Proteinen, geordnet nach den Superfamilien, zu denen sie gehören, ihrer Funktion und einer alternativen Klassifizierungsmethode. Das Vorhandensein von Motiven in TM-Proteinen steht in engem Zusammenhang mit ihren Familien/Superfamilien des Wirtsproteins und ihrer Position entlang der Membrannormale

    Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68

    Get PDF
    Proton-sensing G Protein Coupled Receptors (GPCRs) sense changes in the extracellular pH to effect cell signaling for cellular homeostasis. They tend to be overexpressed in solid tumors associated with acidic extracellular pH, and are of direct interest as drug targets. How proton-sensing GPCRs sense extracellular acidification and activate upon protonation change is important to understand, because it may guide the design of therapeutics. Lack of publicly available experimental structures make it challenging to discriminate between conflicting mechanisms proposed for proton-binding, as main roles have been assigned to either an extracellular histidine cluster or to an internal carboxylic triad. Here we present a protocol to derive and evaluate structural models of the proton-sensing GPR68. This approach integrates state-of-the-art homology modeling with microsecond-timescale atomistic simulations, and with a detailed assessment of the compatibility of the structural models with known structural features of class A GPCRs. To decipher structural elements of potential interest for protonation-coupled conformational changes of GPR68, we used the best-compatible model as a starting point for independent atomistic simulations of GPR68 with different protonation states, and graph computations to characterize the response of GPR68 to changes in protonation. We found that GPR68 hosts an extended hydrogen-bond network that inter-connects the extracellular histidine cluster to the internal carboxylic triad, and which can even reach groups at the cytoplasmic G-protein binding site. Taken together, results suggest that GPR68 relies on dynamic, hydrogen-bond networks to inter-connect extracellular and internal proton-binding sites, and to elicit conformational changes at the cytoplasmic G-protein binding site

    Reverse VSP and crosswell seismic imaging at the Savannah River site

    Full text link

    Structural basis of adenylyl cyclase 9 activation

    Get PDF
    Adenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood. Here, we present the cryo-EM structures of AC9 in several distinct states: (i) AC9 bound to a nucleotide inhibitor MANT-GTP, (ii) bound to an artificial activator (DARPin C4) and MANT-GTP, (iii) bound to DARPin C4 and a nucleotide analogue ATPαS, (iv) bound to Gαs and MANT-GTP. The artificial activator DARPin C4 partially activates AC9 by binding at a site that overlaps with the Gαs binding site. Together with the previously observed occluded and forskolin-bound conformations, structural comparisons of AC9 in the four conformations described here show that secondary structure rearrangements in the region surrounding the forskolin binding site are essential for AC9 activation

    Structural basis of adenylyl cyclase 9 activation

    Full text link
    Adenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood. Here, we present the cryo-EM structures of AC9 in several distinct states: (i) AC9 bound to a nucleotide inhibitor MANT-GTP, (ii) bound to an artificial activator (DARPin C4) and MANT-GTP, (iii) bound to DARPin C4 and a nucleotide analogue ATPαS, (iv) bound to Gαs and MANT-GTP. The artificial activator DARPin C4 partially activates AC9 by binding at a site that overlaps with the Gαs binding site. Together with the previously observed occluded and forskolin-bound conformations, structural comparisons of AC9 in the four conformations described here show that secondary structure rearrangements in the region surrounding the forskolin binding site are essential for AC9 activation

    A graph-based approach identifies dynamic H-bond communication networks in spike protein S of SARS-CoV-2

    Get PDF
    We apply graph-based approaches to identify H-bond clusters in protein complexes. Three conformations of spike protein S have distinct H-bond clusters at key sites. Hydrogen-bond clusters could govern structural plasticity of spike protein S. Protein S binds to ACE2 receptor via H-bond clusters extending deep across interface.Corona virus spike protein S is a large homo-trimeric protein anchored in the membrane of the virion particle. Protein S binds to angiotensin-converting-enzyme 2, ACE2, of the host cell, followed by proteolysis of the spike protein, drastic protein conformational change with exposure of the fusion peptide of the virus, and entry of the virion into the host cell. The structural elements that govern conformational plasticity of the spike protein are largely unknown. Here, we present a methodology that relies upon graph and centrality analyses, augmented by bioinformatics, to identify and characterize large H-bond clusters in protein structures. We apply this methodology to protein S ectodomain and find that, in the closed conformation, the three protomers of protein S bring the same contribution to an extensive central network of H-bonds, and contribute symmetrically to a relatively large H-bond cluster at the receptor binding domain, and to a cluster near a protease cleavage site. Markedly different H-bonding at these three clusters in open and pre-fusion conformations suggest dynamic H-bond clusters could facilitate structural plasticity and selection of a protein S protomer for binding to the host receptor, and proteolytic cleavage. From analyses of spike protein sequences we identify patches of histidine and carboxylate groups that could be involved in transient proton binding.PSI COVID19 Emergency Science FundSpanish Ministry of Science, Innovation and Universities RTI2018-098983-B-I00Excellence Initiative of the German Federal and State Governments via the Freie Universitat BerlinGerman Research Foundation (DFG) SFB 107

    Magma plumbing systems: a geophysical perspective

    Get PDF
    Over the last few decades, significant advances in using geophysical techniques to image the structure of magma plumbing systems have enabled the identification of zones of melt accumulation, crystal mush development, and magma migration. Combining advanced geophysical observations with petrological and geochemical data has arguably revolutionised our understanding of, and afforded exciting new insights into, the development of entire magma plumbing systems. However, divisions between the scales and physical settings over which these geophysical, petrological, and geochemical methods are applied still remain. To characterise some of these differences and promote the benefits of further integration between these methodologies, we provide a review of geophysical techniques and discuss how they can be utilised to provide a structural context for and place physical limits on the chemical evolution of magma plumbing systems. For example, we examine how Interferometric Synthetic Aperture Radar (InSAR), coupled with Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) data, and seismicity may be used to track magma migration in near real-time. We also discuss how seismic imaging, gravimetry and electromagnetic data can identify contemporary melt zones, magma reservoirs and/or crystal mushes. These techniques complement seismic reflection data and rock magnetic analyses that delimit the structure and emplacement of ancient magma plumbing systems. For each of these techniques, with the addition of full-waveform inversion (FWI), the use of Unmanned Aerial Vehicles (UAVs) and the integration of geophysics with numerical modelling, we discuss potential future directions. We show that approaching problems concerning magma plumbing systems from an integrated petrological, geochemical, and geophysical perspective will undoubtedly yield important scientific advances, providing exciting future opportunities for the volcanological community
    corecore