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ABSTRACT

This perspective article highlights the challenges in the theo-
retical description of photoreceptor proteins using multiscale
modeling, as discussed at the CECAM workshop in Tel Aviv,
Israel. The participants have identified grand challenges and
discussed the development of new tools to address them.
Recent progress in understanding representative proteins
such as green fluorescent protein, photoactive yellow protein,
phytochrome, and rhodopsin is presented, along with
methodological developments.

Abbreviations: ARM, Automatic Rhodopsin Modeling; BLA,
Bond Length Alternation; BLUF, Blue-light Using Flavin;

BV, Biliverdin; CBCRS, Cyanobacteriochromes; CC, Cou-
pled Cluster; CECAM, Centre of Europeen de Calcul Atomi-
que et Moleculaire; CoIns, Conical intersections; CpHMD,
Constant-pH Molecular Dynamics; CVS, Collective Vari-
ables; DB, Double Bond; EFP, Effective Fragment Potential;
EGFP, Enhanced Green Fluorescent Protein; EGFP-T65G,
EGFP with a Mutation on Residue 65 Changing Threonine
to Glycine; ESPF, Electrostatic Potential Fitted; EYFP,
Enhanced Yellow Fluorescent Protein; EYFP-G65T, EYFP
with a Mutation on Residue 65 changing Glycine to Thre-
onine; FDET, Frozen-Density Embedding Theory; GFP,
Green Fluorescent Protein; GYG, Glycine–Tyrosine–Glycine
Chromophore; HOMO, Highest Occupied Molecular Orbital;
HPC, High-Performance Computing; LUMO, Lowest Unoc-
cupied Molecular Orbital; MAE, Mean Average Error; MC,
Monte Carlo; MCSCF, Multi-configurational Self-consistent
Field; MD, Molecular Dynamics; MM, Molecular Mechanics;
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PBE, Poisson–Boltzmann equation; PCB, Phycocyanobilin;
pCT-, p-coumaric Acid Thioester; PE, Polarizable Embed-
ding; PES, Potential Energy Surface; Pfr, Far-red Light-
Absorbing State; Pg, Green Light-Absorbing State; Pr, Red
light-Absorbing State; pscB, Propionic Side Chain on ring B
of BV; PYP, Photoactive Yellow Protein; QC, Quantum
Chemical; QM, Quantum Mechanics; QM/MM, Quantum
mechanics/Molecular mechanics; RESP, Restraint Electro-
static Potential; Rh, Rhodopsin; S0, Singlet Ground State; S1,
First Excited Singlet State; SB, Single Bond; TD-DFT, Time-
dependent Density Functional Theory; TPS, Transition Path
Sampling; TYG, Threonine–Tyrosine–Glycine Chromophore.

INTRODUCTION
Photoreceptor proteins are light-sensitive proteins involved in
sensing and response to light in a variety of organisms (1). In
nature, these proteins fulfill important biological functions, such
as regulation of circadian rhythms, phototaxis and light-oriented
growth in plants. Photoreceptor proteins absorb light through
small organic chromophores embedded within the protein matrix.
The chromophore typically absorbs light at a specific wavelength
and uses this radiant energy to trigger the protein response,
which ultimately leads to completing a biological function. From
a biotechnology viewpoint, these proteins represent potential can-
didates for use as efficient biological light converters. They have
already been successfully utilized in a number of technological
applications (2,3). For example, the green fluorescent protein and
its derivatives are used to visualize spatial and temporal informa-
tion in cells with molecular-level resolution (4,5) More recently,
photoreceptor proteins have been used in the field of optogenet-
ics, which allows light activation of specific cells in living organ-
isms (6). In this context, they have been successfully aiding
researchers investigating biological conditions such as depres-
sion, Parkinson’s disease, sleep disorders, and schizophrenia.
Despite the ground-breaking nature of this utilization in life
science and other disciplines, our understanding of photorecep-
tors’ function at molecular level is still incomplete. These gaps
in knowledge, which hinder the development of new

technologies, can be filled with the help of computer simulations
of photoreceptors using multiscale modeling (7).

Due to the large size of the photoreceptor proteins, the hybrid
quantum mechanics/molecular mechanics (QM/MM) embedding
has been the main tool used to model them. QM/MM allows one
to accurately model the chromophore and surrounding environ-
ment while remaining computational feasible (8-11). In this
scheme, the protein environment is treated with classical force
fields, and the chemically active part of the chromophore and its
local environment is treated with more expensive quantum meth-
ods. Hence, the first step in using this multiscale approach is to
determine how to appropriately partition the QM and MM
regions. An additional challenge is to identify an appropriate
QM method and force field parameters, if any exist at all. The
QM/MM embedding has been widely applied to many families
of photoreceptors involving retinal proteins (12), green fluores-
cent proteins (13,14), photoactive yellow protein (15), phy-
tochromes (16), and flavin binding proteins (17,18) (Fig. 1).

Furthermore, the photocycle of typical photoreceptor proteins
involves multiple competing processes (19,20) illustrated in
Fig. 2. Photoexcitation promotes the chromophore into an elec-
tronically excited state characterized by a different electron distri-
bution than in the ground state. Different electron distributions
result in different bonding patterns and, consequently, different
shapes of the potential energy surfaces (PES). Ensuing excited-
state dynamics often entails isomerization, conformational
changes, proton and electron transfer, as well as breaking and
forming bonds. The relaxation pathways include fluorescence,
internal conversion and intersystem crossing. The function of
natural and engineered photoactive proteins is determined by the
interplay between these processes, which entail coupled elec-
tronic and nuclear dynamics. Understanding these quantum pro-
cesses, which unfold in systems with many degrees of freedom
and coupled to the environment, is of great fundamental and
practical importance. Thus, a theoretical modeling sufficiently
accurate to describe property changes (13,18) is a key tool for
deriving mechanistic insights. Theory is instrumental for under-
standing these fascinating species and for the design of novel
motifs for practical applications. However, in order to be useful,

Fig. 1. Photoreceptor proteins discussed in this perspective article. (A) Photoactive Yellow Protein with p-coumaric acid as a chromophore; (B) Rhodop-
sin with a retinal chromophore; (C) Green Fluorescent Protein with a HBDI chromophore; (D) Cyanobacteriochrome with phycocyanobilin as a chro-
mophore; (E) Phytochrome with a Biliverdin chromophore.
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the theory should be able to describe multiple interacting elec-
tronic states, include the effect of the environment, and be able
to provide not only accurate energies, but also nuclear gradients,
interstate properties (i.e., non-adiabatic and spin-orbit couplings),
as well as other properties relevant for spectroscopy. Further-
more, for a complete description of the photocycle, one needs to
be able to execute dynamical simulations including electronic
transitions between multiple states. The main challenge here lies
in the electronic structure theory and software: despite tremen-
dous progress (20), much more needs to be done in terms of
devising more robust and more versatile electronic structure
models for excited states and implementing them in efficient and
practical software (21).

In September 2019, leading experts in the field of computational
modeling of photoreceptor proteins met for a Centre of Europeen
de Calcul Atomique et Moleculaire (CECAM) meeting which took
place in Tel Aviv (Israel). During this CECAM workshop titled
“Frontiers in Multiscale Modelling of Photoreceptors,” the partici-
pants identified the challenges currently facing the field and dis-
cussed the development of new tools to address them. Many
specific points were examined in detail including how to determine
the correct protonation states of the chromophore within the pro-
tein, the effects of electronic polarization on the chromophore and
resulting absorption spectra, QM/MM protocols for partitioning
systems and sampling, and the computational software used in
these types of simulations. In the following, we present several
contributions that were presented at the CECAM workshop Tel
Aviv. The contributions are organized in three categories: (1) chal-
lenges in modeling of photoactive proteins, (2) application of mul-
tiscale methods to photoactive proteins, and (3) methodological
development and software updates.

CHALLENGES IN MODELING OF
PHOTOACTIVE PROTEINS

Lessons from recent computational studies of GFP

To illustrate some of the persisting challenges in modeling of
photoactive proteins, we consider a recent study (22) on the

influence of the first chromophore-forming residue (in position
65) on brightness, photobleaching and oxidative photoconversion
of fluorescent proteins from the GFP family. The goal of model-
ing was to explain stark differences in brightness and photosta-
bility of EGFP, EYFP, and their mutants with reciprocally
substituted chromophore residues, EGFP-T65G and EYFP-G65T.
The key quantities responsible for fluorescent quantum yield,

Fig. 2. Excited-state processes in photoreceptor proteins. The photocycle
of a chromophore, an acting core of a photoreceptor, involves various
competing processes: fluorescence, radiationless relaxation, intersystem
crossing (not shown), excited-state chemical transformations, and electron
transfer. Reproduced with permission from Ref. (19).

Fig. 3. Top: Structures of the model proteins with the TYG (EGFP,
YFP-G65T) (left) and GYG (YFP, EGFP-T65G) (right) chromophores
and the definition of the QM/MM partitioning (the QM part is shown in
blue and the MM part in black). The key difference between the TYG
and GYG chromophores is the -C(OH)CH3 tail in the latter. Bottom left:
Potential energy along torsional angle φ (phenolate flip) in the ground
and excited states. Bottom right: First-order kinetics of the chro-
mophore’s twisting in the excited state in four model proteins. Repro-
duced with permission from Ref. (22).
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extinction coefficients and bleaching yield are the rates of radia-
tionless and radiative relaxation of the photoexcited proteins.
Their first-principle modeling would have required quantum-dy-
namical simulations of the photoexcited proteins using on-the-fly
generated ab initio PESs and couplings computed using high
level of theory (e.g., equation-of-motion coupled cluster methods
(23,24)), which is currently impractical. Instead, the authors (22)
carried out classical molecular dynamics simulations on the
ground and electronically excited states. To study excited-state
state dynamics, the force field parameters of the chromophores
were modified to fit the results of electronic structure calcula-
tions, most importantly, the change in the torsional potential
along the phenolate twist (see Fig. 3) and the changes in partial
charges.

The rate of twisting along torsional coordinate φ was used as
a proxy for the rate of radiationless relaxation. To evaluate
brightness and the rate of radiative relaxation, the authors com-
puted excitation energies and oscillator strengths by the QM/MM
protocol with high-level electronic structure (25) using the snap-
shots from the molecular dynamics trajectories. Despite the sim-
plicity of this approach, the calculations were able to pinpoint
the role of residue 65 on the photochemical properties of the pro-
teins. The absence of the -C(OH)CH3 tail in the GYG chro-
mophore affects hydrogen bond pattern and results in an
increased flexibility, which facilitates radiationless relaxation
leading to the reduced fluorescence quantum yield in the T65G
mutant. The computed lifetimes (see Fig. 3) were in a reasonable
agreement with experiment. Although not conjugated with the π-
system of the chromophore, the -C(OH)CH3 tail also affects its
electronic properties. The GYG chromophore also has larger
oscillator strength as compared to TYG, which leads to a shorter
radiative lifetime (i.e., a faster rate of fluorescence). The faster
fluorescence rate partially compensates for the loss of quantum
efficiency due to radiationless relaxation. The shorter excited-
state lifetime of the GYG chromophore is responsible for its
increased photostability. One important aspect left out in this
study (22) was the effect of mutation 65 on the rate of photoex-
cited electron transfer, one of the main bleaching channels
(19,26). To evaluate the rates of electron transfer, one needs to
compute Gibbs free energies and couplings, which requires
extensive sampling using QM/MM PESs of reduced and oxi-
dized forms (as was done, for example, in Ref. (26)). Presently,
such calculations are rather labor-intensive and also computation-
ally expensive, which precludes their large-scale applications.
This study (22) illustrates the need for devising faster electronic
structure codes for excited-state treatments and more robust and
automated protocols for QM/MM simulations.

Challenges in modeling bioluminescent systems

Other systems that are related to photoreceptor proteins are the
bioluminescent systems. The most studied bioluminescent system
is the one responsible for the light emission in fireflies. The emit-
ting light in fireflies arises from the electronic relaxation of oxy-
luciferin, an organic compound produced by the oxidation of the
D-luciferin substrate inside an enzyme called luciferase. As the
fireflies’ bioluminescent system is already used as a marker in
biology (27), one needs to understand what are the key chemical
and physical factors responsible for the emitted light color. To
gain insight into the mechanism of the light emission, joint
experimental and theoretical studies have been performed.

Theoretical studies of such systems require the use of QM/
MM methods. Taking into account the surrounding protein at the
MM level is essential for understanding the influence of the
enzyme on the color modulation.

The increase in computational capability of modern computers
has enabled studies of larger systems, such as the firefly oxylu-
ciferin, which is also surrounded by thousands of atoms from
protein and/or solvent. The first QM/MM study of this system,
published in 2010 (28), has showed that the protein surrounding
modulates the color of the emitter. This first study was based on
second-order multi-configurational perturbation theory enabled
by the interface between two programs: MOLCAS (29), for the
QM calculation describing the emitter molecule, and TINKER
(30), for the MM part describing the protein and solvent environ-
ment by an additive QM/MM scheme with Electrostatic Potential
Fitted (ESPF) (31) method. The calculations revealed that hydro-
gen-bonding network in the cavity was very important and
explained how a single mutation of one residue, even far from
the light emitter, could dramatically change the hydrogen bond
network and, therefore, the color of the light emission. This
study (and a later work (32)) demonstrated that increasing the
number of hydrogen bonds involving the phenolate oxygen of
the benzothiazole moiety induces a blue shift of the emitted
light, whereas increasing the number of hydrogen bonds around
the other side of the molecule induces a red shift. This finding
can easily be rationalized by looking at molecular orbitals
involved in the electronic transition responsible for the emission:
the transition has a HOMO-LUMO character and results in a
negative charge transfer from the thiazolone moiety to the ben-
zothiazole moiety. Hydrogen bonding stabilizing the HOMO
does not stabilize the LUMO and increases the HOMO-LUMO
gap, leading to a blue shift (Fig. 4).

These studies of color modulation by protein surrounding
give hope to the computational community, opening a door for
fruitful collaboration with experimentalists. Computation of the
light emission of modified emitters and the analysis of factors
responsible for the color are also very promising (33,34). Theo-
retical studies impart complementary insights into the experi-
mental findings, advancing our understanding of such complex
phenomena. Yet, all computational studies carried out in the
last decade also point out to the persistent challenges. For
instance, the calculations are contingent on the availability of
crystallographic structures of the protein. Only few structures
have the ligands inside the cavity. Some have missing loops
that can be important for the correct description of the protein

Fig. 4. Oxyluciferin and the hydrogen-bonding networks responsible for
blue- or red-shifted emission.
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environment (32). Models are constructed based on hypotheses.
This is the case for all systems involving excited states in pro-
teins. The discussion at the CECAM meeting in Tel Aviv high-
lighted the need for robust protocols for comparing theoretical
and experimental results.

Protonation states and the nature of the emitter are additional
challenges shared among photoreceptor proteins. The nature of
the emitter depends on the pH and the “local” pH inside the cav-
ity is not an experimentally measurable. Joint experimental and
computational studies of solvated emitters and of analogous sys-
tems in which the key reactions like the keto-enol tautomeriza-
tion of the thiazolone moiety or the deprotonation of the
phenolate group are blocked show that the experimental observa-
tions can be reproduced by protocols, which take into account
dynamics of the protein, and that the use of analogues helps to
better understand the nature of the light emitter (35-37). Never-
theless, accounting for fluctuating protonation states of the pro-
tein residues still needs to be improved.

APPLICATION OF MULTISCALE METHODS
TO PHOTOACTIVE PROTEINS
Hybrid QM/MM simulations have been instrumental for gaining
molecular level insights into the mechanism of light energy con-
version and subsequent reactions. These simulations can be used
to elucidate reaction pathways directly or in tandem with com-
plementary spectroscopic studies. Often, these studies go hand in
hand with new methodological developments and aid the deriva-
tion of new unifying concepts, advancing our understanding of
these light-triggered proteins. In the following, we present state-
of-the-art studies on four different photoreceptor proteins: pho-
toactive yellow protein (PYP), the Green Fluorescent Protein
(GFP), Phytochrome, and Rhodopsin.

Resonance interactions of ionic chromophores play a key role
in biological photoreception

The charge of the protein-bound chromophores depends on their
protonation state, which can be controlled by pH and structural
modifications of the protein. Electronic properties of ionic (i.e.,
charged) chromophores are efficiently modulated by interactions
with the protein. Such tuning is typically linked to the charge
transfer, occurring in the chromophore upon photoexcitation, and
electrostatic interactions with the protein (38-42). In the S0 state,
the charge is typically localized on the protonated (or deproto-
nated) moiety of the chromophore whereas in the excited state,
the charge is often translocated to the opposite end of the conju-
gated π-system, leading to a considerable charge transfer charac-
ter of the S0-S1 transition. The electrostatic environment of the
protein interacts with these two different charge distributions and
thus modulates the S0-S1 energy gap. Moreover, charge separa-
tion at highly twisted geometries enables electrostatic control of
the energies of conical intersections (CoIns) and saddle points
mediating photochemical or thermal isomerization (42,43).
Although the protein–chromophore interactions are not limited to
electrostatic effects (44-46), treating the protein and solvent as a
collection of point charges remains a popular approach which, in
practice, is often capable of reproducing experimentally observed
protein effects quatitatively (47-49).

In the photoactive yellow protein (PYP) photoreceptor, the
anionic p-coumaric-acid thioester (pCT-) chromophore is

profoundly affected by hydrogen bonding (50) and electrostatic
interactions (43). In the native protein environment, pCT- photoi-
somerizes around its central double bond (DB) (51,52). In addi-
tion, computational studies suggested that pCT- may undergo
rotation around its central single bond (SB) (43). Properties of the
pCT- chromophore are rationalized by invoking chemical reso-
nance (13,50) in addition to considering the S0-S1 charge transfer.
Four resonance forms with the negative charge either on the phe-
nolic or carbonyl groups (Fig. 5) are stabilized depending on the
charge localization by hydrogen bonds that pCT- forms with the
protein (53). Naturally, the contributions of the resonance struc-
tures depend on the difference in their energies (54). The extent of
the resonance structure mixing in the S0 wave function is reflected
by the difference in the length of the SB and DB at the S0 opti-
mized geometry (the bond length alternation, BLA). The larger the
energy difference, the larger the BLA and vice versa. Accordingly,
the pCT- chromophore tuned by the interactions with water mole-
cules shows an increased BLA when hydrogen bonds are formed
with the phenolic group and a decreased BLA when a hydrogen
bond is formed with the carbonyl group (53). The extent of the res-
onance mixing determines the S0-S1 excitation energy and amount
of charge transfer, as demonstrated by the linear correlation plots
of these properties (Fig. 6).

Twisting around a central bond increases contributions of the
resonance forms with the twisted bond being a single bond (in
the S0 state) and localizing diradicaloid (in the S1 state), which
also determines the localization of the molecular charge. At the
geometry 90° twisted around the SB, the negative charge is
localized on the carbonyl fragment in the S1 state and on the
phenolate fragment in the S0 state. In contrast, the DB twist
increases the negative charge on the phenolate in the S1 state
and on the carbonyl in the S0 state (43,50,53). This opposite
charge localization in the S0 and S1 states enables efficient stabi-
lization of the SB-twisted and DB-twisted CoIns by the carbonyl
and phenolic hydrogen bonds, respectively (43). Notably, the
energies of the SB and DB CoIns show linear correlations with
the BLA (Fig. 6a); the signs of the energy correlations are deter-
mined by the charge localization and charge transfer (Fig. 6b).

As suggested by the linear correlations, any property pre-
sented in Fig. 6 can be regarded as a descriptor (46) characteriz-
ing tuning of the pCT- chromophore by interactions with its
environment in the protein or solvent. The increased mixing of
the resonance structures reduces the BLA and charge transfer

Fig. 5. Resonance structures explaining the interdependent properties of
the anionic pCT- chromophore of PYP derived in Ref. (53). C4-C7 and
C7=C8 are the central single bond (SB) and double bond (DB), respec-
tively.
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character, shifts the absorption maximum to the red and activates
the SB twist in the S1 state. In contrast, the reduced mixing of
the resonance structures increases the BLA and charge transfer
character, blue shifts the absorption maximum and favors DB
isomerization. In accord with these dependences derived from
computational studies, recently published theoretical analysis of
systematically tuned GFP variants (54) has suggested employing
the difference in the energies of the resonance forms as a linear
scale for analyzing and predicting optical properties. Among the
chromophore properties obtained computationally, the BLA is a
convenient descriptor, because it is derived from the S0 state
geometry optimization. In fact, models examining electrostatic
tuning of biological chromophores by their protein environment
highlight correlations among properties (42), and, in particular,
the correlation between the BLA and excitation energy (38-
40,55,56). The correlations of photochemical properties strongly
suggest that the theory of resonance is generally applicable to
rationalizing the tuning mechanism of photoreceptor proteins.

Modeling photochemical reactions

Studies of chemical reactions occurring with chromophores or
molecular groups in chromophore-containing pockets in the

ground and excited electronic states constitute an important field
of the photoreceptor protein research. Application of methods of
multiscale modeling is an essential step in computational simula-
tions of these reactions.

To illustrate the approaches, we consider the reaction of the
recovery of the fluorescence state of the reversibly photoswitch-
able protein Dreiklang (57). The unique properties of this protein
from the GFP family are due to a reversible hydration/dehydra-
tion reaction at the imidazolinone ring of the chromophore.
Recovery of the fluorescent state, which is associated with a
chemical reaction of chromophore dehydration, is an important
part of the photocycle of this protein.

In Fig. 7, a model system composed of the protein surrounded
by solvent water molecules is shown in the left panel. The dark
balls specify the atoms of the hydrated chromophore, and the
side chains of the critical amino acid residues Arg96 and
Glu222. The corresponding molecular groups are assigned to the
quantum subsystem (QM part) shown in the right panel in the
figure. The remaining molecular groups are included to the
molecular mechanics (MM) subsystem.

In QM/MM calculations, energies and forces in the QM part are
computed using conventional quantum chemistry methods, while
the MM subsystem is described by force field parameters. Usually,

Fig. 6. The linear correlation plots summarize the XMCQDPT2/cc-pVDZ results for the pCT- chromophore interacting with water molecules (53).
Panels a and b show correlations for the energies and charge transfer, respectively. The bond length alternation (BLA) value corresponds to the differ-
ence in the length of the C4-C7 and C7=C8 bonds at the geometries fully optimized in the S0 state.

Fig. 7. Left: a model system for simulations of the recovery reaction of the fluorescent state in Dreiklang. Right: a part of the system selected for QM/
MM calculations of the reaction energy profile.
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the electrostatic embedding scheme is applied to relate the QM and
MM parts, assuming contributions of the partial charges from all
MM atoms to the one-electron QM Hamiltonian.

The first step of the dehydration reaction in Dreiklang is a
proton transfer from the nitrogen atom N68 to the oxygen atom
OW, leading to the cleavage of the bond between the hydroxyl
and the imidazolinone ring and formation of the water molecule.
To compute the energy profile for this step, a series of QM/MM
constrained minimizations along the assumed reaction coordinate
(here, the N68–H distance) should be carried out. When the sad-
dle point on the energy surface is located using the conventional
transition-state search, calculations of harmonic vibrational fre-
quencies should confirm that single imaginary frequency (here,
810i cm−1) characterizes the obtained structure. The computed
energy difference between the levels of the reactant and the tran-
sition state allows one to estimate the activation energy (here,
about 25 kcal mol−1), which is consistent with the measured rate
constant of the reaction of thermal recovery of the fluorescent
state in Dreiklang.

In a similar fashion, a full cycle of chemical transformations
in the chromophore maturation in the wild-type GFP (58) as well
as reactions of the photo-induced decomposition of the GFP
chromophore upon photobleaching of the protein is considered
(59). Also, we can describe the competing reactions of covalent
binding of the biliverdin chromophore to cysteine residues in the
bacterial phytochrome domains upon assembly a prospective
variant of the near-infrared fluorescent protein miRFP670 (60).

The primary goal of all these simulations is to establish mech-
anisms of chemical transformations in the chromophore-contain-
ing pockets.

pKa calculations of phytochromes with Poisson–Boltzmann
electrostatics

The accurate determination of pKa values of amino acid residues
buried in a protein environment remains a challenging task (61).
Burying titratable moieties in proteins usually leads to an
increase of the pKa value of acidic groups and the decrease of
the pKa value of basic groups, as compared to the respective val-
ues in aqueous solution. However, depending on the concrete
microscopic description of the protein environment, unusual titra-
tion may occur as a result of specific charge–charge interactions
which can shift the pKa values of titratable groups in any direc-
tion (62). This effect is often significant at active sites, where
perturbed pKa values of specific groups are of biological rele-
vance (63).

Specifically, photoactivation of photoreceptor proteins is often
coupled with protonation changes of the chromophore and/or key
residues of the protein matrix (64-67). These protonation
changes, in turn, facilitate proton transfer reactions involved in
signal transduction and functional activation (68). Thus, the pre-
cise determination of the protonation states of chromophores and
titratable amino acids in their vicinity constitutes a major step in
computational modeling of photoreceptors proteins.

Various approaches for computing pKa values in proteins
have been developed over the past six decades starting from the
pioneering work of Tanford and Kirkwood (69). Since pKa shifts
originate from electrostatics, much of the effort has been directed
toward the accurate description of electrostatic interactions using
either microscopic or macroscopic models, or even a combina-
tion of both (61). For example, approaches based on the

combination of electrostatic energy computations based on the
solution of the Poisson–Boltzmann equation (PBE) with classical
molecular dynamics (MD) simulations have been used in differ-
ent proteins for predicting pKa values (70). This hybrid approach
enables taking into account protein flexibility, hydrogen bond
network rearrangements, side-chain reorientations, and water
molecules inside protein cavities.

To illustrate this methodology, here we focus on the photoac-
tivation process of the Agp2 phytochrome structure. This process
is initiated by a double-bond isomerization of the biliverdin (BV)
chromophore, which is covalently bound to the protein matrix,
thereby triggering conformational changes and proton transfer
reactions between the protein and the cofactor. Importantly, the
BV molecule contains six titratable sites, two propionic side
chains (pscB and pscC) and four pyrrole rings (A, B, C and D)
(see Fig. 8b) Furthermore, two conserved histidine residues are
in direct contact with the tetrapyrrole chromophore. Interestingly,
spectroscopic data indicate that the propionic side chain at ring
C (pscC) of the BV molecule of the Agp2 phytochrome is proto-
nated in the Pfr and Meta-F states and remains protonated even
up to pH of 11 (71). Proton release is observed to take place at
the step from Meta-F to Pr state, when the photoreceptor
becomes activated (72). Recently, it has been demonstrated that
the pscC deprotonation of BV chromophore is essential for trig-
gering a secondary structure change (73). In the case of prototyp-
ical phytochromes, it has been spectroscopically observed that
one of the inner pyrrole rings transiently loses a proton during
the transition from Meta-R to Pfr states (67,74). These experi-
mental results highlight the importance of considering the bilin
chromophore as a titratable site for computational modeling.

Since pKa calculations rely upon an accurate description of
protein’s electrostatic field, the derivation of atomic partial
charges is an essential step in modeling (75). This is true, in par-
ticular, for many prosthetic groups such as bilin molecules,
which were not included in the standard parametrization proto-
cols of classical protein force fields like CHARMM (76),
AMBER (77), or GROMOS (78). Such atomic partial charges
can be generated from the electrostatic potential of the molecule
computed using quantum chemical approaches and employing
the two-stage restrained electrostatic potential (RESP) method
(79).

Predicted pKa values of proteins are highly sensitive to the
atomic arrangement of the input structure (80). This fact may
have serious consequences when trying to gain mechanistic
insights out of these calculations, since the crystal structure rep-
resents the protein arrangement at the pH in which it was crystal-
lized and not necessarily the active conformation. In the case of
Agp2 phytochrome, the pH at which the protein was crystallized
was estimated to lie between 5.5 and 9 (81). Since variations in
pH can alter the protonation states of titratable groups including
the bilin chromophore, slight conformational changes, such as
propionic side-chain reorientations (pscB and pscC) or rearrange-
ments in the hydrogen bond network can be expected in the
crystalline state. These minor structural distortions may signifi-
cantly affect the computed pKa values.

In order to sample a wider conformational space and, thereby,
account for protein flexibility, Monte Carlo (MC) or MD simula-
tions are carried out considering different discrete protonation
patterns. (82) These approaches have been applied successfully
on different proteins even using very short MD simulations (20
ns). (70) For example, the pKa calculation of the pscC of Agp2
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in the Pfr state requires at least three MD trajectories: one trajec-
tory with deprotonated pscC and two trajectories with singly pro-
tonated pscC. On each 20 ns long trajectory, time frames are
extracted every 100 ps and used as input for electrostatic energy
computations performed by solving the linearized Poisson–Boltz-
mann equation using the BV atomic partial charges derived in
the previous step. An equilibrium pKa value of the pscC can be
then obtained by averaging the results of electrostatic energy
computations for each of the three MD simulations weighted by
their respective Boltzmann factor. (38) The pKa values of the
pscC in the Pfr state obtained with this methodology are pre-
dicted within the range between 4.5 and 9.6 units, which is in
perfect agreement with experimental spectroscopic data suggest-
ing a protonation of the of the carboxylic group. Furthermore,
Meyer et al. (38) showed that the root mean square deviations
(RMSD) between measured and computed pKa values of 194
titratable residues in 13 proteins can be improved from 0.96 to
0.79 (in pH units) if energy minimizations with weaker electro-
static interactions (ϵ = 4) of the structures extracted from MD
simulations are preformed prior to electrostatic calculations.

In a similar fashion, this methodology can be applied to deter-
mine the protonation state of histidine residues located in the
chromophore binding pocket. His248 and His278 (Fig. 8b) are
highly conserved residues that are involved in the proton transfer
events in the chromophore binding pocket. There have been
some efforts to determine precisely protonation states of both

histidines. Velazquez et al. (83) identified one of these histidines
as the key residue controlling pH-dependent equilibria in the
Cph1 phytochrome, suggesting a pKa below 6.0. Additionally,
Takiden et al. (84) performed electrostatic energy calculations in
combination with MD simulations in the Agp1 phytochrome for
determining the most likely protonation states of both histidines.
The pKa values obtained for both histidines were below 7.0,
indicating that both histidines are deprotonated. These results are
in agreement with previous PROPKA calculations (67,85).

Crystal structures are often dehydrated, which means that
functional water molecules may be missing. Therefore, some pro-
teins require the inclusion of additional internal water molecules
for the electrostatic energy calculations. This can be achieved
implicitly by filling the volume occupied by water molecules
with a dielectric medium with a dielectric constant ϵ = 80 (42).
Indeed (86), applied a new cavity algorithm to 20 titratable
groups introduced as point mutations in Staphylococcal nuclease
(SNase) variants for which crystal structures and pKa values are
available. This methodology led to a better agreement between
computed and measured pKa values in a set of nine mutants, as
reflected by an RMSD of 2.04 for pKa obtained with a cavity
algorithm compared to 8.8 predicted using standard approach.

In summary, since photoactivation of photoreceptor proteins is
often coupled to proton-transfer events between the chromophore
and the key residues of the protein matrix, precise determination
of their protonation states becomes a crucial step in

Fig. 8. a) crystal structure of Agp2 phytochrome in Pfr state, b) BV chromophore, pyrrole water (PW) and histidines located in the chromophore bind-
ing pocket. c) generic phytochrome photocycle with the red light-absorbing parent state (Pr) and far-red light-absorbing parent state (Pfr).
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computational modeling. In this respect, the combination of elec-
trostatic energy calculations with classical MD simulations
extended by proper description of protein hydration offers an
efficient and reliable approach for investigating pKa shifts of
chromophores and amino acid residues of photoreceptor proteins.

Investigation of the photoproduct color tuning in the
cyanobacteriochrome Slr1393g3

Cyanobacteriochromes (CBCRs) were recently discovered and
categorized as a subfamily of phytochrome photoreceptor pro-
teins. They are distinct from the typical phytochrome due to their
compact size, because they only require one domain for chro-
mophore incorporation and complete photochemistry, whereas
three domains are required in case of canonical phytochromes
(87). Like all the representatives of this superfamily, they are
photochromic, meaning they have two stable forms that can be
interconverted into each other by light of different wavelength.
What makes CBCRs special is the variability of their absorption
maxima, in contrast to the canonical phytochromes that absorb in
red or far-red. Therefore, it is of high interest to understand the
molecular regulation of the absorption in these proteins. One
measure for this quantity is the difference in the positions of the
lowest energy absorption maxima between the thermodynami-
cally stable dark state and the photoproduct state. To investigate
this, application of multiscale modeling is the natural choice as it
allows to determine the excited states of the chromophore, which
is described with quantum mechanics, and to explicitly include
the effect of the apo-protein, which is treated via molecular
mechanics.

One example of a CBCR is the cyanobacteriochrome
Slr1393g3, in which the absorption is shifted from the red in the
dark form Pr to the green in the photoproduct form Pg as shown
in Fig. 9. For this protein, crystal structures of both forms are
available (88). In addition, a hybrid form Ph was reported, in
which the tetrapyrrolic phycocyanobilin (PCB) chromophore is
found in Pr conformation, but its protein environment is in the
Pg form. First insights into the absorption of the chromophore
inside the protein for these forms could already be gained by cal-
culations on optimized structures (88).

For a systematic study of the absorption in the Pr and Pg
forms, a benchmark study was conducted (90). One focus was
on the efficient description of the chromophore in the ground
state. For this purpose, semiempirical methods were employed to
optimize the PCB structures of both forms in the ground state
and the resulting geometries were compared with higher level
ab initio calculations. It was found that DFTB2+D is the best
performing method for this purpose. In addition, DFTB2+D/
AMBER MD simulations were realized to extract snapshots for
excited-state calculations, for which a variety of semiempirical
and ab initio methods were benchmarked. Furthermore, methods
based on ab initio time-dependent density functional theory were
included. The semiempirical methods ZINDO/S and sTD-DFT as
well as the ab initio method RI-ADC(2) turned out to perform
the best.

The photoproduct tuning was studied systematically, using
DFTB2+D/AMBER for sampling of 100 snapshots via a 1 ns
trajectory and focusing on the three aforementioned methods for
the excited-state calculations (91). It was found that the electro-
static interactions of the protein with the chromophore induce

similar shifts in absorption for both forms. In contrast to this,
wavefunction analysis showed that the length of the conjugated
system decreases when going from the Pr to the Pg form
explaining the unusual blue shift observed in this protein. In par-
ticular, the tilt of the D-ring is correlated with the energy of the
lowest excited state (S1), which is responsible for the absorption
in the visible range.

In conclusion, the computational studies lead to a molecular-
level understanding of the photoproduct tuning in the CBCR
Slr1393 supporting the trapped-twist mechanism proposed by
Lagarias and coworkers for this class of red/green CBCRs (92).
On the technical note, we established a computational protocol
for spectrum simulations, including QM/MM partitioning and
benchmarking of approaches for efficient sampling. We expect
that the derived protocol is applicable to further phytochrome-
like photoreceptors.

Application of constant-pH molecular dynamics simulations
to sensory rhodopsin

QM/MM models of photoactive proteins most often are based
on a particularly drastic assumption: each and every titratable
amino acid keeps a user-defined protonation state which is deter-
mined according to chemical intuition and/or (semi-) empirical
titration procedures (93-95). However, this assumption no longer
holds if the property of interest is experimentally found to be
pH-dependent. Essentially, the protein is a poly-acid with a very
large number of interacting titrating sites. Accordingly, even a
slight pH shift may induce numerous protonation changes, lead-
ing to structural reorganization and modified electrostatic interac-
tions, eventually altering the property. The recently designed
protocol based on Constant-pH MD followed by thousands of
QM/MM calculations (CpHMD-then-QM/MM) is specifically
meant to study how pH can tune the photophysical and photo-
chemical properties of a chromophore embedded in an extended
(macro-)molecular environment (96). In a nutshell, it entails: (1)
extracting thousands of statistically independent structures from
MD trajectories that are sampling both the conformation and the
protonation state spaces of the protein (97) and (2) averaging
the desired property obtained from the QM/MM calculations.
The CpHMD-then-QM/MM protocol has been successfully
applied to the elucidation of the molecular origin of the pH-de-
pendent absorption spectrum of Anabaena Sensory Rhodopsin
(ASR) (98), a transmembrane protein featuring the retinal chro-
mophore in either the all-trans or 13-cis conformations (99,100).
Both the tiny pH=3 to pH=5 red shift and the small pH=5 to
pH=7 blue shift have been reproduced and their molecular ori-
gin analyzed.

Here, we want to stress out that the number of populated pro-
tonation microstates is always large. In the case of ASR, assum-
ing only aspartic acid (9 residues), glutamic acid (5 residues) and
histidine (4 residues) can titrate between pH=3 and pH=8, the
maximum number of microstates is 29×25×34=1327104! Even if
most of them are not significantly populated at a given pH, it
must be realized that hundreds or thousands of microstates can
still co-exist (Table 1).

Whereas pH=3.5 can be characterized by a few important pro-
tonation microstates, it is no longer the case for pH=5.5 and
pH=7.5. Accordingly, the ASR absorption spectrum must be cal-
culated as the weighted average of all the most important
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microstates (Eq. 1). The weight (wi) of a given microstate is pH-
dependent: it can be evaluated by the number of structures fea-
turing its proton distribution and extracted from a particular
CpHMD trajectory, relatively to the total number of structures.

λmax ¼∑
i
wiλ

i
max (1)

In Equation (1), λimax represents the maximum absorption
wavelength of a given protonation microstate, as calculated as an
average of all the corresponding structures. Because the number
of populated microstates is usually large, it is possible that the
most abundant one is characterized by a maximum absorption
λimax that differs significantly from the overall λmax . An example
of this effect is presented in Fig. 10. In Eq. (1), both λmax and
the 8 first λimax are reported together for the same 3 pH values.

At pH=3.5, only a few ASP and GLU residues have the
potential to be titrated. This translates to a dominant contribution
(31%), whose λimax is in good agreement with the corresponding
λmax . At neutral pH, the most populated microstate features a
λimax value, which is 7 nm red-shifted. However, its occurrence
is low (8%) and is balanced by other contributions, which are
closer to λmax . Accordingly, this is the perfect example where
the most abundant protonation microstate is not a good represen-
tative of the average. Finally, at the intermediate pH=5.5 value,
most of the ASP, GLU and HIS residues are titrating, resulting
in a huge number of populated microstates, that is, to very low
individual probabilities. In this case, it is virtually impossible to

manually pick a protonation microstate whose λimax would be
close to λmax .

METHODOLOGICAL DEVELOPMENT AND
SOFTWARE UPDATES
Progress in algorithm and software developments is tightly cou-
pled to the success of multiscale modeling in application to pho-
toreceptor proteins. As a result, higher accuracy can be achieved
and larger systems can be studied. In this section, seven contri-
butions are presented, which aim at exploiting data-driven
approaches in QM/MM methodologies, characterization of intri-
cate hydrogen-bonding networks in large macromolecular sys-
tems, the development of new sampling algorithms for the
characterization ground- and excited-state dynamics of biological
chromophores, and the implementation of user-friendly software
interfaces for efficient and automated modeling of complex bio-
logical systems, such as rhodopsin, using multiscale methods.

Extending the capabilities of QM/MM by a data-driven
approach

Naturally, the essential purpose of applying any multiscale mod-
eling technique is to reduce the associated computational cost.
As explained earlier, QM/MM has been the most straightforward
approach for studying photoreceptor and related proteins in this
respect, as it does not suffer from any limitations from the a pri-
ori selected potential models as in conventional force fields. As
a matter of fact, describing photoactive systems requires one to
adopt excited-state calculations, and applying QM/MM is often
very costly. One possible remedy against this cost issue could be
to employ computationally more economic approaches for the
QM part, such as semiempirical techniques. However, matching
the reliability of high-level theories such as CASPT2 or EOM-
CCSD with semiempirical models is a daunting task, even after
intensive re-parametrizing efforts. Thus, somehow constructing
the PES in an explicit manner based on data from high-level
quantum chemical theories is a desirable path. It can also be
quite useful for studying protein mutation effects, as the

Fig. 9. Left: Slr1393g3 protein structure in the Pr form. The PCB chromophore is shown in gray in the balls and sticks representation and the colors of
selected sidechains are: CYS-528 in green, HIS-529 in orange and ASP-498 in blue. Right: Absorption spectra for the Pr (red), Pg (green) and Ph (or-
ange) forms calculated with sTD-DFT based on CAM-B3LYP ground state calculations with a QM region consisting of PCB and the sidechains shown
on the left. The spectra are based on 100 snapshots from a DFTB2+D/AMBER trajectory taken every 10 ps. The sticks represent the positions and rela-
tive absorption maxima for the Pr and Pg forms extracted from measured spectra (89).

Table 1. N: number of populated microstates at three different pH values
(40 ns long CpHMD trajectories, ASR with 13-cis retinal) (98) #1 to #8:
probabilities of the 8 most probable protonation microstates. Note that
proton positions are considered indistinguishable in protonated ASP and
GLU residues, as well as in deprotonated HIS.

pH N 1 2 3 4 5 6 7 8

3.5 492 0.31 0.13 0.08 0.06 0.05 0.04 0.03 0.02
5.5 3600 0.03 0.03 0.03 0.02 0.01 0.01 0.01 0.01
7.5 1161 0.08 0.07 0.06 0.06 0.05 0.04 0.03 0.03
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constructed surface can often be simply re-used with the protein
mutation without any further quantum chemical calculations,
whereas directly using QM/MM for mutants necessitates repeat-
ing costly QM calculations. The weakest link in explicitly con-
structing PES is the reliability. When an analytic form of a
surface is employed with parametric fitting to high-level compu-
tational data, the region of high fidelity is rather limited. This is
especially troublesome for treating photo-induced processes, as
the molecular system after photon absorption tends to possess a
large amount of vibrational energy such that the chromophore
and potentially its neighboring units can wander around an ample
configurational space.

As a practical alternative of direct QM/MM calculations without
assuming an intrinsically limited analytic form of the surface,
using the interpolation mechanics/molecular mechanics (IM/MM)
technique can be considered. The interpolation technique was orig-
inally designed for describing gas phase reaction dynamics (101),
and it was recently extended for describing excited-state surface
hopping dynamics of chromophore-embedded protein systems
such as GFP (102). Of course, the interpolation itself depends on a
relatively large data set with energies, gradients, and Hessians at
multiple configurations. For example, for describing the GFP chro-
mophore, a data set with more than 1000 configurations were
needed for a reliability. This burden also increases with more flexi-
ble chromophore units. Even for the relatively flexible chro-
mophore in the photoactive yellow protein (PYP) with multiple
torsional degrees of freedom, an interpolated PES with high fide-
lity can still be constructed (Fig. 11).

Interpolation-based PES is an example of data-driven surfaces.
The question then is: how to expedite the data collection pro-
cesses and how to filter out more important data from a large
set. This is an important milestone for generalizing the technique,
and there are on-going improvements toward this goal (103). We
note that commonly used Shepard interpolation scheme, based
on Euclidean distances in the configurational space, may not be
the most reliable approach. Machine-learning algorithms, which
are fashionable these days, may contribute significantly in these
efforts in the future.

Long-distance proton transfers via dynamic hydrogen-bond
networks

In protein environments, the transfer of protons across long dis-
tances is thought to occur via hydrogen-bond paths composed of

protein groups and water molecules. Such hydrogen-bond paths
could be sampled transiently, as the protein changes conforma-
tion along its reaction cycle; moreover, changes in protonation
states during the proton-transfer reaction are likely to couple to
changes in local protein and water dynamics. Prominent exam-
ples here are retinal proteins, for which changes in the retinal
isomeric state are coupled with the rearrangements of internal
water molecules (104-106), and photosystem II, in which
dynamic water molecules establish proton-conduction path (107).

The dynamic nature of the water-mediated proton-transfer
paths and the complexity of the bio-systems bring about the
challenge of how to identify and characterize hydrogen-bond
paths between putative proton-transfer groups. We have thus
designed and implemented Bridge (108), a suite of Python
graph-based algorithms, which enable efficient analyses of water-
mediated hydrogen bond networks. Bridge computes two-dimen-
sional graphs of the hydrogen bonds of the bio-system, and then
queries the graphs to identify, for example, all hydrogen-bonded
paths starting from a proton-donor group, or all hydrogen-bonded
paths between proton donor and acceptor groups (108).

Particularly important for long-distance proton transfers is to
identify, in an ensemble of protein conformations, those events
characterized by a continuous connection between the proton
donor and acceptor group—such conformations could, for exam-
ple, be used as starting point for quantum mechanical computa-
tions to find out whether the energetics of proton transfer along
that path is compatible with experiments (108).

To illustrate the usefulness of Bridge with identifying hydro-
gen-bond paths in complex bio-systems, we present the network
of protein–water hydrogen bonds in a dimer of chimera channel-
rhodopsin, C1C2 (Fig. 12A). The extracellular halves of the two
protein monomers participate in a remarkable network of hydro-
gen bonds that included some 48 charged and polar protein
groups, and numerous water molecules (Fig. 12A). An unex-
pected observation from the Bridge graph-based analyses of
C1C2 was that the two retinal Schiff bases can bridge transiently
via continuous hydrogen-bond paths of 12-13 hydrogen bonds
(108). This long-distance network between the two retinals is
rapidly perturbed by mutations that alter H bonding (108).

Once we computed a protein’s graph of hydrogen bonds, we
can use centrality measures to identify protein groups that are
common to hydrogen-bond paths of particular interest for the
functioning of that protein (110). With betweenness centrality,

Fig. 10. pH 3.5 (a), 5.5 (b), 7.5 (c) maximum absorption wavelength (in red) and the 8 most populated protonation microstate individual contributions
(in gray). Wavelengths are given in nm. Bubble surfaces are proportional to microstate weights (squared labels), relatively to the complete ensemble.
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for example, we evaluate how often a protein group participates
in short-distance paths that connect any two other protein groups
(110). Such an analysis revealed that, on the surface of photosys-
tem II, there is a carboxylate group (PsbU-E93 in (Fig. 12B))
central to a dense network of protein–water hydrogen bonds sur-
rounding the putative proton-binding site PsbO-D102 (109,111).
Although most of the waters participating in the hydrogen-bond
network are very dynamic (109) and visit the surface of the pro-
tein just shortly, for picoseconds or less, close to PsbU-E93
waters can stay for as long as 320.6 � 0.6 ps (109).

Pursuant to the considerations above, we suggest that graph-
based analyses of protein hydrogen-bond networks provide valu-
able tools to analyze efficiently large data sets, arising from
numerical simulations of complex bio-systems, to identify long-
distance hydrogen-bond paths that could conduct protons,
explore the response to mutations, and to predict protein groups
with central role in long-distance connection networks of a
protein.

Toward efficient sampling of photoactivation mechanisms
with path-based methods

Even with the computational cost efficiency of multiscale model-
ing techniques, such as hybrid QM/MM simulations, sampling
the key steps of a photocycle can still be a daunting task. The
pathway from the dark state to the signaling state, and back, is
typically comprised of several somewhat activated processes—
for example, electron transfers, proton transfers and conforma-
tional changes—which occur rarely in affordable simulation
timescales. Enhanced sampling techniques are commonly used to
tackle such challenges in protein systems. However, these
schemes traditionally require the definition of a sensible reaction
coordinate and/or stable states, both of which are not trivial to
formulate and often unknown in photoreceptors. The application
of more robust sampling techniques, not subject to numerous tri-
als and errors, is vital to resolve intricate photoactivation mecha-
nisms.

Fig. 11. Reliability of interpolated PES: contour maps of the interpolated S0 and S1 state surfaces (solid lines) of the PYP chromophore in comparison
with the reference quantum chemical data (dashed lines). Energy values are denoted in eV units. The contours were drawn by varying a torsional angle
and its coupled bond length around the S0-optimized geometry as denoted with the molecular structure. The interpolation data points were sampled in
an iterative manner by adopting excited-state molecular dynamics simulations. The size of the interpolation data set was 2100.

Fig. 12. Dynamic hydrogen-bond networks in complex bio-systems. (a)t Extensive protein–water hydrogen-bond network in the extracellular halves of
monomers Mon-1 and Mon-2 of the C1C2 dimer. The protein is shown as ribbons and molecular surfaces, and selected protein groups are shown as
bonds with carbon atoms colored cyan, nitrogen—blue, and oxygen—red. For clarity, we label only protein groups part of a shortest-distance path that
connects the two retinal Schiff bases. The molecular graphics and the path analyses are based on ref. (108). (b): Protein–water hydrogen-bond network
at the surface of the soluble PsbO and PsbU subunits of photosystem II. Lines inter-connect charged and polar sidechains via hydrogen-bonded water
bridges; for clarity, we display water bridges that are present during at least 50% of a simulation of the PsbO-PsbU complex in aqueous solution. Cα of
amino acid residues are colored according to relative betweenness centrality values. Lines are color-coded, according to occupancy values. The image
and the centrality computations are based on Ref. (109)
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A possible solution toward increasing sampling efficiency and
making free energy calculations and dynamics simulations more
affordable is offered by path-based methods. In these schemes,
the handling of a high-dimensional reaction coordinate, com-
posed of several collective variables (CVs), is simplified by the
introduction of an optimizable curve that connects two known
states in the space of the CVs. Then, the progress along this path
CV can effectively be used as a reaction coordinate. Examples
of this kind of methods can be found in Refs (112-114). The
benefits are three-fold: (1) free energy calculations along adap-
tive paths are not subject to the exponential increase in cost with
the dimensionality of the reaction coordinate, and can reach a
linear performance scaling (115); (2) with the diminished penalty
for dimensionality, one can introduce more candidate CVs in a
single attempt to increase the chance of success; and (3) with the
directionality provided by the path, the sampling is focused into
the transition region of interest. Furthermore, most standard bias-
ing methods (e.g., umbrella sampling (116) or metadynamics
(117)) and algorithmic extensions can be employed either along
the path (118), or in the direction perpendicular to it in order to
find alternative mechanisms (119). In Fig. 13, we show an illus-
trative example of an adaptive path-CV capturing a transition
channel on the Müller–Brown (120) potential energy surface.

Path CVs have been successfully used in blue-light using fla-
vin (BLUF) photoreceptors, to efficiently extract mechanistic
details and free energies (121,122). Other path-based methods
that do not require biasing, such as transition path sampling
(TPS) (123), have also been used in PYP photoreceptors (124),
and similar principles have been applied to rhodopsin by tracking
the time evolution of an excited-state population (125).

Path-based methods still require two stable state definitions—
for example, the dark and light states—as well as a set of, even
if many, somewhat correct CVs. In cases where these aspects are
unknown or debated, a new generation of data-driven and
machine-learning-based sampling methods holds the key to speed
up the exploration of photoactivation mechanisms. CVs can be
discovered with novel combinations of clustering, time-lagged-in-
dependent component analysis, slow-mode separation, autoen-
coder-based dimensionality reduction and many more techniques
(126-130). Cutting-edge advances in deep learning also yield free
energy differences without the need for reaction coordinates, by

mapping atomic configurations to a reference latent representa-
tion (131).

FDET-based simulation of vertical excitation energies of
chromophores embedded in proteins

Frozen-Density Embedding Theory (FDET) (132,133)-based
multi-level simulations provide an alternative to conventional
QM/MM simulations (both polarizable or not). In FDET, the
total energy functional is expressed as a functional depending on
two independent variables: NA-electron wavefunction (embedded
wavefunction ΨA) and a user-chosen density ρB(r) associated
with the environment. ΨA is thus obtained from the constrained
minimization of the Hohenberg–Kohn density functional for the
energy of the total system (Fig. 14). We refer the reader to Ref.
(133) for the FDET definitions and formulas for the energy and
the embedding potential applicable to variational methods for
ground state and Refs. (134,135) for FDET extensions. These are
omitted here for the sake of brevity. Compared to QM/MM, set-
ting up a FDET simulations involves similar steps: (1) selecting
the subsystem to be treated at the quantum mechanics level, (2)
choosing the suitable method for the quantum part, (3) generat-
ing the embedding potential, (4) solving the “embedded QM
problem,” (5) evaluating the properties. The most important dif-
ferences between FDET-based and QM/MM simulations concern
steps (1), (3) and (5). Concerning (1), the commonly used sys-
tem-independent approximations for the non-Coulombic compo-
nents of the FDET embedding potential given in eq. (44) in Ref.
(133) are adequate only for weakly overlapping ΨA and ρB.
Thus, the applicability of FDET with such approximations is lim-
ited to models where the chromophores are not covalently bound
to the protein. Concerning (3), generating the FDET embedding
potential involves choosing an electron density ρB(r) for the
environment of the quantum part. This step corresponds to
choosing parameters for atom-centered potentials in QM/MM
describing the interactions with the environment. Concerning (5),
in FDET the non-Coulombic interactions with the environment
are taken into account in a self-consistent manner in both the
energy and the embedding potential. This results in the depen-
dence of the FDET embedding potential on ΨA. For electronic
excitations, this numerically inconvenient feature of FDET can

Fig. 13. An adaptive path-CV captures the transition channel on the Müller–Brown (120) potential energy surface.
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be efficiently treated by linearized FDET (134) or by performing
additional iterations (see interface E in Fig. 16).

The representation of not only the Coulomb part but also all
quantum effects in the FDET embedding potential (not as a pos-
teriori energy contributor to the energy, which is usually done in
QM/MM methods) makes FDET-based methods especially suit-
able for evaluation of changes in the properties evaluated as
expectation values of the embedded wavefunction. The total
FDET energy given in Eq. (30) in Ref. (133) includes a term
depending solely on ρB(r). For practical applications targeting
the energy of the total system, this term must be approximated
as well. The essence of multi-level modeling is that this energy
contribution is approximated using some simpler method. This
offers a large number of possibilities for practical realizations. In
this perspective, we focus on such practical applications of
FDET where the explicit evaluation of this contribution to the
total energy is not needed. This concerns studies targeting the
environment-induced shifts of observables evaluated as expecta-
tion values for a given ρB(r).

Turning back to the choice of ρB(r), the simplest protocol
consists in using the electron density evaluated as a ground state
density of the environment without the embedded species (level
0). If the environment does not comprise molecules which are
hydrogen-bonded one to another, this protocol can be simplified
even further by means of generating ρB(r) as a superposition of
densities of individual molecules (132,136). We recommend level
0 as the starting point for any large-scale FDET-based simula-
tion. Benchmark studies on model systems indicate its great use-
fulness for modeling excitation shifts exceeding 0.1 eV (137)
(MAE on 351 excitations is about 0.04 eV, see Ref. (138) and
Fig. 15). Hydrogen-bonding-induced shifts of excitation energies
in organic chromophores lie usually in the range of -1.5 to 1.5
eV. More sophisticated protocols to generate ρB(r) take into
account such effects as (1) mutual polarization of different parts
of the environment (136), (2) implicit or explicit treatment of
electronic polarization of ρB(r) by the chromophore (139), (3)
fluctuations of the structure of the environment (140,141). We
refer the reader also to the work by Neugebauer and collabora-
tors (142,143) on different protocols to generate ρB(r) and their
effect on the observables obtained from the embedded wavefunc-
tions for chromophores embedded in proteins. We rather see
going beyond level 0 as a possible option decided on the case-
by-case basis. The user should be given the possibility to

estimate these effects using smaller model systems to determine
if going beyond level 0 is needed in large-scale simulations.
Fig. 16 shows a flow diagram indicating essential steps and tools
available for setting up and performing large-scale FDET-based
computations of electronic excitations for a chromophore embed-
ded in a protein environment. Our previous report on chro-
mophores embedded in proteins (41) used the LR-TDDFT
strategy for excited states. The tools presented in Fig. 16 allow
the user to: (1) use methods going beyond LR-TDDFT if the nat-
ure of the excited states requires it and (2) more flexible and
controllable choices for ρB(r) if going beyond level 0 is desired.

Polarizable embedding as a tool to address photoreceptor
proteins

Photoreceptor proteins are activated by their interaction with
light. In order to understand the working mechanisms of photore-
ceptors at an atomistic level, at least a partial quantum mechani-
cal description is needed. This, unfortunately, is significantly
hampered by the fact that the size of photoreceptor proteins in
their natural environments quickly becomes out of reach for con-
ventional quantum chemistry methods. Thus, in order to gain
atomistic insight into the functioning, and eventually to be able
to define rational design strategies of novel photoreceptor pro-
teins, development of suitable quantum chemistry methods is of
significant importance.

The polarizable embedding (PE) model (145) is a fragment-
based classical embedding approach belonging to the class of
QM/MM models, that is, a central part of the system in question
is described at the level of quantum chemistry whereas the
remaining part of the system—the environment—is described

Fig. 14. Scheme of the FDET model of a chromophore embedded in a
protein. Different colors represent regions in 3D space which are
described using different descriptors: embedded ΨA for the chromophore
(green) and density ρB(r) for its nearest neighbors (dark blue). Note that
these regions can overlap. If needed, the long range effects on the
embedded wavefunction can be accounted for by means of a Coulombic
potential vext

Coulomb.

Fig. 15. Environment-induced shifts of the lowest vertical excitation
energy for organic chromophores in hydrogen-bonded environments
(XH-27 dataset from Ref. (144)). Reference shifts (Δϵref) are taken Ref.
(144) (excitation energy shifts obtained from ADC(2) calculations for the
whole clusters). FDET shifts (ΔϵFDET) are obtained from embedded ADC
(2) calculations as described in Ref. (144) except the reduction of the
number of centers in the basis sets used for ΨA and ρB (monomer expan-
sion is used here).
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effectively by a classical embedding potential. For photoreceptor
proteins, the part treated using quantum chemistry would typi-
cally be chosen as the chromophoric part of the protein. In the
PE model, the environment is divided into a number of frag-
ments, and the permanent charge distribution of each fragment is
modeled by a multicenter multipole expansion. In addition, dis-
tributed dipole–dipole polarizabilities are assigned to each of the
fragments thus introducing an explicit account of polarization in
the environment. A similar strategy is utilized in the effective
fragment potential (EFP) approach (146-149) One of the
strengths of the PE model is exactly this account of environment
polarization in addition to the possibility to calculate the frag-
ment multipole moments and polarizabilities based on separate
quantum chemistry calculations, that is, the model does not rely
on the use of a predefined force field. The PE model is thus gen-
erally applicable to any kind of environment ranging from simple
solvents to highly heterogeneous systems like a protein matrix.
For the latter, and other biological environments as well, the
fragmentation of the environment becomes more involved since
covalent bonds need to be broken in order to define the frag-
ments making up the environment. For this, we have found the
method of molecular fractionation with conjugate caps to be very
efficient (150,151). Fig. 17 contains an illustration of the PE
model indicating the part of the system treated using either quan-
tum chemistry or by multipoles and polarizabilities.

The PE model has been designed for calculation of spectro-
scopic properties and excited states in particular. Thus, the model
is centered around a formulation building on quantum chemical
response theory. Both linear and non-linear properties, such as
one-, two- and three-photon absorption processes, may be
described based on the PE model. In addition, the PE model has
been formulated within both time-dependent density functional
theory (TD-DFT) as well as correlated wave function
approaches, such as coupled cluster (CC) and multi-configura-
tional self-consistent field (MCSCF), and can thus be used to
describe situations where TD-DFT is known to possess problems
for example in relation to excited states dominated by double
excitations. For a recent discussion of the capabilities of the PE
model, we refer to Refs. (152,153)

Through applications, we have generally found the PE model
to represent a rather robust computational procedure providing
results in close agreement with full quantum chemistry-based cal-
culations. However, care should be taken when considering espe-
cially negatively charged molecules (chromophores) or excited
states of even partial Rydberg character (154). In such situations,
PE-based calculations may suffer from electron spill-out errors
meaning that electron density from the part of the system treated
using quantum chemistry is leaking into the environment,
thereby leading to an over-stabilization of the ground and espe-
cially the excited states (155). In order to address such issues,
we recently formulated the polarizable density embedding (PDE)
approach (156). In this model, the fragments in the environment
are described by their full charge densities, replacing the multi-
poles, while still keeping the atom-centered polarizabilities to
efficiently account for polarization effects. Importantly, the PDE
model contains, in addition, a term in the embedding operator
that accounts for Pauli repulsion, thereby preventing electron
spill-out (155).

Both the PE and PDE models are available through the Polar-
izable Embedding library (PElib) and are currently interfaced to
a number of electronic structure programs—for details, we refer
to a recent tutorial paper on the use of the PE model (152).

Toward automated population dynamics simulations of light-
responsive proteins (11)

At the molecular level, light sensitivity is controlled by two pho-
toreceptor properties: (1) activation quantum efficiency and (2)
dark noise (125) A complete theory of light sensitivity in biolog-
ical photoreceptors must therefore describe the relationship
between each property and the photoreceptor electronic and
molecular structure. Years ago, we reported (42) on the theory of
dark noise in a specific family of biological photoreceptors (i.e.,
light-responsive proteins): type II (animal) rhodopsins (12) How-
ever, even when limiting our interest to such rhodopsin family, a
theory of quantum efficiency has not yet been established. As a
consequence, we still ignore, for instance, the mechanism
enabling rod cell rhodopsin, the vertebrate retina most sensitive
dim-light photoreceptor, to utilize almost 70% of the absorbed
photons for visual transduction. Reveling such a mechanism will
impact not only our understanding of light sensitivity, but also
the design of rhodopsin mutants leading to controllable receptor
responses with obvious implications in biology/medicine,
(157,158) optogenetics (159,160) as well as in the emerging field
of synthetic biology (161)

Fig. 16. General workflow of a FDET-based simulation. The main steps,
given in square boxes, can be performed using various standard quantum
chemistry codes: 1—generation of ρA(r) and ρB(r) in real space, 2—gen-
eration of the embedding potential in real space, 3—obtaining embedded
NA-electron wavefunction (variational or not) from a user-chosen quan-
tum chemistry method and code; 4—a posteriori evaluation of the FDET
energy components which depend on the method used in step 3 and other
properties. Interfacing is performed by subroutines indicated with capital
letters: A—generation of initial NA-electron density ρA

ref(r); B—genera-
tion of ρB(r) (superposition of atomic or molecular densities, statistical
ensemble averaging, pre-polarization, freeze-and-thaw optimization, etc.);
C—generation of the embedding potential in atomic basis set representa-
tion (it can include an additional electrostatic field component as shown
in Fig. 14); D—extracting quantities obtained in step 2 for step 3; E—it-
erative update of the embedding potential for verification of the lineariza-
tion approximation (optional).
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As for the case of rhodopsin dark noise, to be of biological
interest the validity of a quantum efficiency theory/mechanism
has to assess not only for a single photoreceptor but for an entire
array of related photoreceptors. When this investigation has to be
carried out computationally, it is necessary to construct a full
array of photoreceptor models of the same class or, in the case
of proteins, homologues or/and mutants. There is another reason
for focusing on arrays of models. Rarely chemists and biologists
are interested in properties of a specific molecular system but,
rather, in trends. In fact, trends are not only more significant for
predictions and applications but are less affected by systematic
errors in the property calculation. This also applies to the predic-
tion of light sensitivity.

The discussion above indicates that the investigation of light
sensitivity in rhodopsins (or, actually, any other biological pho-
toreceptor) poses a formidable computational chemistry chal-
lenge. On one hand, it is apparent that the complexity of the
unavoidable atomistic and multiscale (QM/MM) photoreceptor
models (a seven α-helices transmembrane protein incorporating a
light-responsive retinal chromophore, see Fig. 18A) and of the
protocol for building them limits the number of models, possibly
a few tens, that can be built manually for each given investiga-
tion. Therefore, one has to employ an effective automated QM/
MM model building protocol if one plans to study hundreds of
mutants as it seems necessary for either establishing/simulating a
trend, a general mechanism or a mechanistic spectrum. A second
issue originates from the fact that the property to be calculated,
that is, the quantum efficiency of the rhodopsin (Rh) activation
requires the simulation of the light-triggered dynamics of a siz-
able molecular population. For Rh, this corresponds to the
dynamics of the light-triggered photoisomerization of the retinal
chromophore from its dark (i.e., equilibrium) form containing the
11-cis stereoisomer (rPSB11) to its transient bathorhodopsin
(bathoRh) primary photoproduct (see Fig. 19A) containing a dis-
torted form of the all-trans stereoisomer (rPSBAT) as illustrated
in Fig. 19B. Thus, the quantum efficiency can be defined as the
fraction of photoexcited Rh molecules that after absorption of a
photon successfully form bathoRh. Such fraction is indicated
with the symbol Φcis-trans.

In this section, we report on the prospective systematic inves-
tigation of the Φcis-trans, and therefore of light sensitivities of an
entire arrays (say hundreds) of rhodopsins. While this is still an

unpractical research endeavor, we show that the basic technology
necessary to do so is rapidly becoming available. Such technol-
ogy is based on two paradigms: (1) the automatic building of
rhodopsin QM/MM models (see Fig. 18B and C) and (2) the use
of such models for the automated generation of room tempera-
ture (actually, any temperature) Boltzmann distributions provid-
ing the initial conditions (geometries and velocities) for
successive quantum-classical (non-adiabatic) trajectory calcula-
tions (see Fig 19B). The resulting trajectory bundle corresponds
to a simulation of the light-triggered population dynamics
describing the rhodopsin photoisomerization and necessary for
Φcis-trans calculations (Fig. 19C for three different cases).

Automatic building of QM/MM models of rhodopsins

A specialized protocol for the automated construction of QM/
MM models of rhodopsins, which uses [Open]Molcas (165) as
the electronic structure calculation engine, has been introduced.
This is the Automatic Rhodopsin Modeling (a-ARM) protocol
designed to produce congruous and reproducible monomeric, gas
phase and globally uncharged models of rhodopsins based on
electrostatic embedding and the hydrogen-link-atom frontier
between the QM and MM subsystems (166,167) Although a-
ARM currently only constructs rhodopsin-like models (see the
model structure in Fig. 18A), it provides a template for future
development and generation of an automatic QM/MM building
strategy for other, more general systems. The building protocol
is illustrated and detailed in Fig. 18B and C.

a-ARM has already been benchmarked for several rhodopsins
from different organisms that display different functions. In fact,
members of the rhodopsin family are found in diverse organisms
and, thus, constitute an exceptionally widespread class of light-
responsive proteins, driving fundamental functions in vertebrates,
invertebrates and microorganisms (12,168,169) a-ARM has been
shown to be able to generate models suitable for the prediction
of trends in spectroscopic properties, i.e., maximum absorption
(λamax ) and emission (λ fmax ) wavelengths, of wild-type rhodopsin-
like photoreceptors and their variants, with an error bar of 3.0
kcal mol−1 (0.13 eV) (166,167) (See Fig. 20A and B). These
two critical wavelengths are approximately calculated and
expressed in terms of vertical excitation energies (ΔES1-S0) from
S0 and S1 energy minima respectively.

Fig. 17. Illustration of the PE model applied on the membrane-embedded C1C2 channelrhodopsin. The active part, a protonated retinylidene Schiff
base, is modeled using DFT/WFT, while the effect from the chromophores environment is modeled classically using atom-centered multipoles and polar-
izabilities.
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As reported in Fig. 20, the employed protein structures used
as template for the model constructions where obtained from X-
ray crystallography (left panel) or through comparative modeling
(center panel). Two sets of variants for bovine rhodopsins (Rh)
and bacteriorhodopsin (bR) are also reported (right panels). The
computed data were obtained using the a-ARMdefault (167,170)
(blue up-turned triangles) and a-ARMcustomized (167) (yellow
squares). Experimental data, as energy difference corresponding
to the wavelength of the absorption maxima, are also reported
(red down-turned triangles). All computed data are within a 3.0
kcal mol−1 (0.13 eV) error, apart from a number of outliers that
were corrected using a-ARMcustomized which required the semi-
automatic selection of, for instance, the conformation of a resi-
due side chain or a change in the ionization state of an ionizable
residue. Further details can be found in ref. (170)

Population dynamics during the light-triggered isomerization
of homologue rhodopsins

Rod rhodopsin is the light-sensitive G-protein-coupled receptor
responsible for dim-light vision in vertebrates. As anticipated
above and illustrated in Fig. 19A and B, its activation is driven
by a vibrationally coherent 11-cis to all-trans double-bond pho-
toisomerization of the retinal chromophore which occurs with a
67% quantum efficiency triggers the receptor photocycle and,
ultimately, visual transduction (9) From the above discussion, the
first step in investigating such a mechanistic problem must be

the construction of the QM/MM model of the photoreceptor cap-
able to describe its spectroscopic and photochemical properties
and, most importantly, which could allow to calculate Φcis-trans.
The fraction of successful trajectories with respect to the total
provides the Φcis-trans value (13) Of course, the trajectories
require initial conditions (nuclear positions and velocities) consis-
tent with a Boltzmann distribution. In the near future, we hope
to be able to implement an automated initial condition generator
as well as an automated way to start the required number of tra-
jectories (few hundreds at least) directly in the a-ARM QM/MM
model generator so that to automate the full procedure of com-
puting Φcis-trans. The use of the constantly increasing number of
CPU cores available either locally or at regional, national or
international computer centers, would make such a research pos-
sible even for hundreds of rhodopsins hopefully representing dif-
ferent organisms and mutants. We are convinced that soon in the
future studying systematically Φcis-trans in many diverse organ-
isms will lead to new and fundamental knowledge on how pro-
teins control photochemical reactions in general and what are the
mechanistic spectrum achievable. Most importantly, we hope to
"extract" from these calculations the general mechanistic rules,
which must be based on factors such as the steric and electro-
static interactions between protein and chromophore, controlling
the mechanistic spectrum and, most importantly, the Φcis-trans.

In Fig. 19C, we report, as demonstrative examples, the com-
parison between the population dynamics of three different Type
II rhodopsin proteins all corresponding to visual pigments (one

Fig. 18. Structure of the a-ARM rhodopsin model building protocol. (A) General scheme of a QM/MM model generated by a-ARM for a Type I rho-
dopsin. This is composed of: (1) environment subsystem (gold cartoon), (2) retinal chromophore (green tubes), (3) Lys side-chain covalently linked to
the retinal chromophore (blue tubes), (4) main counter-ion MC (cyan tubes), (5) residues with non-standard protonation states, (6) residues of the chro-
mophore cavity subsystem (red tubes), (7) water molecules, and external (8) Cl− (green balls) and (9) Na+ (blue balls) counterions. The external extra-
cellular (OS) and intracellular (IS) charged residues are shown in frame representation. (right) General workflow of the a-ARM rhodopsin model
building protocol for the generation of QM/MM models of wild-type and mutant rhodopsins. The a-ARM protocol comprises two phases: (B) input file
preparation phase and (C) QM/MM model generator phase.
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ancestral to indicate that the proposed calculations can also be
applied to studies attempting to reconstruct the evolution of bio-
logical photoreceptors (163)). The result of each calculation is
described in terms of progression along the α coordinate span-
ning the potential energy surface connecting the S1 vertical exci-
tation region to a decay region in the vicinity of ISS1/S0, where
the decay occurs at geometries where α is comprised between 60
and 120 degrees on timescales and the timescale goes from 30 to
180 fs. All results shown are based on automatically constructed
a-ARM models and 200 trajectory simulations.

Unifying computational protocols for multiscale modeling of
photoreceptor proteins

Computational protocols for multiscale modeling of photoreceptor
proteins involve a large number of computer programs and proto-
cols that are highly specialized for a particular modeling technique
and scale of modeling (171) The new platform VIKING (Scand-
inavian Online Kit for Nanoscale Modelling, viking-suite.com)

integrates a number of these tools in a single easy-to-use multiscale
platform, which provides tools for setting up simulations, data
analysis and visualization (172) VIKING alleviates the need for
specialized know-how, which is traditionally required for each
individual modeling technique, and also provides a standardized
workflow, making the elaborate work of integrating multiple meth-
ods in a single study significantly more tractable and reproducible.
The primary goal of VIKING is to deliver a set of standard proto-
cols, which researchers can use to study complex functioning of
biomolecular systems, such as photoreceptors. Furthermore, VIK-
ING has been developed as a platform where new methods and
protocols could be implemented with ease, once they become
available to the broad research community.

VIKING lowers the entry barrier and time investment for
computational studies of biomolecular processes occurring on
sub-atomic to macromolecular scales and beyond. By making it
easy to set up multiscale molecular models and employ a range
of industry standard tools, VIKING provides a rapid workflow
and illustrates simulation results in a 3D web viewer.

Fig. 19. Rhodopsin population dynamics. (A) 11-cis retinal chromophore (rPSB11 for Type II rhodopsins such as Rh) photoisomerization and isomeriz-
ing torsional angle α (C10-C11-C12-C13 dihedral angle). (B) Schematic representation of the light-triggered ultrafast population dynamics of Rh. ISS1/S0
(48,162) stands for intersection space between the ground state (S0) and the first singlet excited state (S1) representing collectively the points of decay
(hop) to the ground state (S0). The reaction coordinate is complex but it is mainly driven by the α angle. The diagram on the right represents a non-adia-
batic trajectory calculation where the initial vibrational wave-packet (or population) is represented by a collection of initial conditions (structures and
velocities) indicated by light-blue circles and one trajectory is propagated from each initial condition point. (C) The time progression of α along a set of
200 non-adiabatic trajectories simulating the S1 population dynamics of bovine rhodopsin at room temperature is given in the top-left panel. The bot-
tom-left panel gives the statistic of successful and unsuccessful hops as a function of time. The computed quantum efficiency value is also given. The
circles represent decay from S1 to S0 with a red circle representing successful decays leading to the photoproduct while green circles lead to the reactant.
Center. Same results for a model reconstructed from an amino acid sequence obtained via phylogenetic analysis and ancestral sequence reconstruction
techniques (163,164). Right. Same data for the opsin from a human green cone receptor cell.
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VIKING serves the purpose of a computational microscope,
that is, a unique instrument for researchers. In particular, it pro-
vides a computational workflow for intuitive linking of existing
modeling software, which so far existed as stand-alone programs.
VIKING utilizes the established programs as engines to obtain
scientific data and provides unique algorithms that are able to set
up all the needed files for computations; earlier the process was
often tedious even for experienced users. VIKING algorithms
take the user through a carefully thought workflow (VIKING
wizard, see Fig. 21). This VIKING wizard is relying on a unique
approach as it integrates more than 15 years of research experi-
ence in computational biophysics, which allow the system to
provide protocol templates to address practically any possible
simulation that involves spatial scales ranging from electronic to
the macromolecular assemblies. The simulation protocols include
justified combination of simulation parameters that throughout
decades were shown to be optimal for different types of biophys-
ical simulations.

VIKING wizard addresses all the key questions that one has
to answer to prepare needed input for simulations (provide a
structure for the simulation, define temperature, pressure, level of
theory, etc.); many technical parameters for simulations are then
automatically determined by a complex algorithm based on the
input provided by the user. This permits unexperienced users,
unaware of the algorithmic backgrounds, not to worry about the

technicalities. The automatic determination of simulation parame-
ters relies on those simulation protocols that have been shown
appropriate for a given simulation through decades of research
experience. For example, classical MD simulations of biomole-
cules are handled through the MM potentials. In MD simula-
tions, a complex molecular assembly is modeled by a set of
interacting particles, whose evolution in time and space is calcu-
lated by numerical integration of Newton’s second law. In most
cases, the parameters for numerical solutions of the Newton’s
equation are standard, and the protocol for its solution in the
case of a multimillion molecule can be automatized. MD simula-
tions of biological systems in VIKING interface to some popular
programs, currently NAMD (173), AMBER (174), MBN
Explorer (175), and GROMACS (176). Interface to selected
quantum chemical (QC) codes, for example, Gaussian (177),
GAMESS (178), DALTON, (179) ORCA (180), and Firefly
(181), or the spin dynamics code MolSpin, enables studying
electronic processes in molecular systems and chemical reactions,
which is important in the context of photoreceptive proteins. The
capabilities can be further extended by enabling interfaces with
other QC packages with the state-of-the-art methods for excited
states, such as Q-Chem (25), Turbomole (182), and Molpro
(183). Naturally, VIKING permits linking MD and QC simula-
tions such that input for one calculation type can be used for
another calculation. The multiscale nature of VIKING goes well

Fig. 20. Benchmarking of a-ARM. (A) Computed excitation energies ΔES1-S0 in both kcal mol−1 (left axis) and eV (right axis) for various rhodopsins.
The employed protein structures where obtained from X-ray crystallography (left panel) or through comparative modeling (center panel). Two sets of
variants for bovine rhodopsin (Rh) and bacteriorhodopsin (bR) are also reported (right panel). The computed data were obtained using the a-ARMdefault

(blue up-turned triangles) and a-ARMcustomized (gold squares). Experimental data, as energy difference corresponding to the wavelength of the absorption
maxima, are also reported (red down-turned triangles). (B) Differences between computed and experimental excitation energies ΔΔE Exp

S1-S0 in both
kcal mol−1 (left axis) and eV (right axis).

Photochemistry and Photobiology, 2021, 97 261



beyond linking of MD and QC, as it provides the key framework
to link any possible scale ranging from electronic to the scale of
protein complexes. VIKING effectively prepares parameters for
simulation on one scale from other complete simulations and
thereby permits programs to exchange data in the most efficient
way. VIKING handles the relevant chunks of data from one pro-
gram into special file formats that permit effective communica-
tion between the codes on the dedicated VIKING server.

VIKING aspires to become the first tool to enable streaming
support of biomedical data from supercomputers. High-perfor-
mance computing (HPC) increasingly opens new frontiers for
diverse research areas as well as for industrial applications; in
this respect, computational investigations of photoreceptors are
just one example. A traditional area of research, extensively
using HPC, is computational biophysics, where MD and QC are
typically employed to study the workings of complex biomolecu-
lar machineries in the minute detail. While the increasing HPC
power enables researchers to study ever more complex molecular
systems, the amount of data produced is becoming a serious
challenge of its own—both in terms of storage and processing
but also in terms of visual exploration; researchers need large
data storage arrays, a fast network connection to the supercom-
puter and powerful computer workstations with large amounts of
memory to explore and analyze the resulting datasets. VIKING
is designed as powerful web-based visualization toolkit for ato-
mistic simulations, which eventually will allow the user to visu-
ally explore results using any PC, without the need to download
the data in full. Through invention of a unique specialized file
format for storing simulation results, the VIKING toolkit will
stream the compressed atomic coordinates from a server during
“playback” of a simulation to the web browser on a client PC,
which can then use the data to generate an animated visual repre-
sentation of the studied molecular structure on the fly.

In summary, we envision that VIKING will become a versa-
tile and convenient platform to (1) alleviate the growing logistic
challenges when working with large-scale simulation data, (2)
support broader adoption of biophysical simulations through
easy-to-use and modern web-based tools and (3) enable direct
sharing of simulation data through the web to any target audi-
ence.

CONCLUSION
Since its foundation more than 40 years ago, multiscale modeling
has become a mature and vital research method. It has found
wide application in the field of photoreceptor proteins. The
hybrid QM/MM method is an essential tool for addressing elec-
tronic properties of biological chromophores, such as those pre-
sent in biological photoreceptors. Despite the immense
knowledge and experience collected over the last decades,
numerous challenges still remain in the field. The high computa-
tional demand associated with these hybrid techniques, the large
degree of freedom of the protein matrix and environment, the
lack of structural and chemical information, and the complex nat-
ure of the electronic structure, significantly limits their applicabil-
ity and presents the opportunity for future development. Practical
applications of QM/MM approaches to various photoactive pro-
teins, such as GFP, PYP, phytochrome, rhodopsin, and lucifer-
ase, clearly illustrate the urgent need for devising faster
electronic structure codes for excited-state description, compre-
hensible protocols for transparent handling of structural data
input and user-friendly software for the analysis and evaluation
of computational output, as well as more robust and automated
protocols for QM/MM simulations. These challenges and the
progress in method developments were presented and thoroughly
discussed at the CECAM meeting in Tel Aviv.

Fig. 21. Concept and workflow of VIKING. Computational tasks are configured in the web interface by supplying the input data (structures, potentials,
input field values etc), from the local computer or an online database. The simulation is then performed on a supercomputer (Stampede2, Marconi and
Abacus 2.0 are currently supported), the results are aggregated and represented visually in the web browser. Supercomputer photograph courtesy of
iStockphoto LP. Copyright 2012.
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The participants introduced several conceptual and technical
strategies for reducing the computational cost of QM/MM
approaches. For instance, the exploration of potential energy
surfaces of ground and excited states of chromophores in pro-
teins can be more efficiently performed by combining QM/
MM methodology with data-driven approaches, such as those
based on interpolation schemes. The implementation of these
data-driven approaches provides opportunities for further
improvements with machine-learning techniques. High compu-
tational demand can be also overcome by rational simplifica-
tion of the system under study. This simple approach has
been shown to be effective for the anionic p-coumaric-acid
thioester chromophore of PYP, for which linear correlations
were found between excitation energies and charge transfer
nature and BLA resulting from the combination of a set of
resonance structures.

Many contributions highlighted the relevance of conforma-
tional sampling when computing molecular properties. The com-
putational cost of any QM/MM calculation, however, increases
enormously upon exploration of the conformational space, which
is, for biological systems, still being commonly performed at a
classical level. Thus, development and implementation of effi-
cient and accurate hybrid QM/MM sampling techniques are
urgently needed. The computational cost of studying reaction
mechanisms can be drastically reduced, for example, by using
path-based methods, which replaces the high-dimensional space
of reaction coordinates by an optimizable curve in the collective
variable space connecting two known states. Although the defini-
tion of adequate collective variables is not trivial, several cut-
ting-edge methods based on clustering techniques are currently
under development.

The complexity of the protein environment usually makes the
computation of any ground- or excited-state property of biologi-
cal chromophores demanding. Here, the fine tuning of protein
electrostatics by protonation states of titratable amino acids and
the dynamics of hydrogen bond networks should be adequately
described. Whereas the protonation states of titratable side chain
can be accurately predicted by Poisson–Boltzmann-based
approaches combined with molecular dynamics simulations or in
the form of constant-pH MD simulations, the analysis of the
intricate hydrogen bond network is possible with the help of
Bridge, a newly developed tool.

Finally, two strategies for user-friendly automation of multi-
scale modeling protocols of photoreceptor proteins were pre-
sented: the Automatic Rhodopsin Modeling (α-ARM), which is
able to successfully reproduce and predict excited-state properties
of rhodopsin-like photoreceptor. Further, the VIKING project
offers a general online platform interfacing various quantum
chemical codes and molecular dynamics packages for multiscale
modeling of complex biological systems.

The rapid growth of high-performance computing technolo-
gies, including the emergence of new and potent mathematical
algorithms and their implementations in more user-friendly and
automated codes, will certainly support the development and
implementation of multiscale modeling methods toward higher
accuracy and expand their applicability to larger and more com-
plex dynamical biological systems.
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32. Carrasco-López, C., J. C. Ferreira, N. M. Lui, S. Schramm, R. Ber-
raud-Pache, I. Navizet, S. Panjikar, P. Naumov and W. M. Rabeh
(2018) Beetle luciferases with naturally red- and blue-shifted emis-
sion. Life Sci. Alliance 1(4), e201800072.

33. Berraud-Pache, R. and I. Navizet (2016) QM/MM calculations on a
newly synthesised oxyluciferin substrate: new insights into the con-
formational effect. Phys. Chem. Chem. Phys. 18(39), 27460–27467.

34. Zemmouche, M., C. Garcı́a-Iriepa and I. Navizet (2019) Light emis-
sion colour modulation study of oxyluciferin synthetic analogues:
Via QM and QM/MM approaches. Phys. Chem. Chem. Phys. 22(1),
82–91.

35. Garcı́a-Iriepa, C., P. Gosset, R. Berraud-Pache, M. Zemmouche, G.
Taupier, K. D. Dorkenoo, P. Didier, J. Léonard, N. Ferré and I.
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molecular mechanism of thermal noise in rod photoreceptors.
Science (80-) 337(6099), 1225–1228.

43. Boggio-Pasqua, M., C. F. Burmeister, M. A. Robb and G. Groenhof
(2012) Photochemical reactions in biological systems: probing the
effect of the environment by means of hybrid quantum chem-
istry/molecular mechanics simulations. Royal Soc. Chem. 14,
7912–7928.

44. Yanai, K., K. Ishimura, A. Nakayama and J. Y. Hasegawa (2018)
First-order interacting space approach to excited-state molecular
interaction: Solvatochromic shift of p-coumaric acid and retinal
Schiff base. J. Chem. Theory Comput. 14(7), 3643–3655.

45. Guareschi, R., O. Valsson, C. Curutchet, B. Mennucci and C.
Filippi (2016) Electrostatic versus resonance interactions in photore-
ceptor proteins: The case of rhodopsin. J. Phys. Chem. Lett. 7(22),
4547–4553.

46. Khrenova, M. G., A. V. Nemukhin and V. G. Tsirelson (2019) Ori-
gin of the π-stacking induced shifts in absorption spectral bands of
the green fluorescent protein chromophore. Chem. Phys. 522,
32–38.

47. Yu, J. K., R. Liang, F. Liu and T. J. Martı́nez (2019) First-princi-
ples characterization of the elusive i fluorescent state and the struc-
tural evolution of retinal protonated schiff base in
bacteriorhodopsin. J. Am. Chem. Soc. 141(45), 18193–18203.

264 Maria-Andrea Mroginski et al.

https://www.springer.com/gp/book/9783030577209


48. Schnedermann, C., X. Yang, M. Liebel, K. M. Spillane, J. Lugten-
burg, I. Fernández, A. Valentini, I. Schapiro, M. Olivucci, P.
Kukura and R. A. Mathies (2018) Evidence for a vibrational phase-
dependent isotope effect on the photochemistry of vision. Nat.
Chem. 10(4), 1–7.

49. Suomivuori, C. M., A. P. Gamiz-Hernandez, D. Sundholm and V.
R. I. Kaila (2017) Energetics and dynamics of a light-driven
sodium-pumping rhodopsin. Proc. Natl. Acad. Sci. USA 114(27),
7043–7048.

50. Gromov, E. V., I. Burghardt, H. Köppel and L. S. Cederbaum
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Ferré (2019) CpHMD-Then-QM/MM identification of the amino
acids responsible for the anabaena sensory rhodopsin PH-dependent
electronic absorption spectrum. J. Chem. Theory Comput. 15(8),
4535–4546.

99. Tahara, S., Y. Kato, H. Kandori and H. Ohtani (2013) PH-depen-
dent photoreaction pathway of the all-trans form of anabaena sen-
sory rhodopsin. J. Phys. Chem. B 117(7), 2053–2060.

100. Rozin, R., A. Wand, K. H. Jung, S. Ruhman and M. Sheves (2014)
PH dependence of anabaena sensory rhodopsin: retinal isomer com-
position, rate of dark adaptation, and photochemistry. J. Phys.
Chem. B 118(30), 8995–9006.

101. Ischtwan, J. and M. A. Collins (1994) Molecular potential energy
surfaces by interpolation. J. Chem. Phys. 100(11), 8080–8088.

102. Park, J. W. and Y. M. Rhee (2016) Electric Field Keeps Chro-
mophore Planar and Produces High Yield Fluorescence in Green
Fluorescent Protein. J. Am. Chem. Soc. 138(41), 13619–13629.

103. Cho, K. H., S. Chung and Y. M. Rhee (2019) Efficiently trans-
planting potential energy interpolation database between two sys-
tems: Bacteriochlorophyll case with FMO and LH2 complexes. J.
Chem. Inf. Model. 59(10), 4228–4238.

104. Kouyama, T., T. Nishikawa, T. Tokuhisa and H. Okumura (2004)
Crystal structure of the L intermediate of bacteriorhodopsin: evi-
dence for vertical translocation of a water molecule during the pro-
ton pumping cycle. J. Mol. Biol. 335(2), 531–546.

105. Jardón-Valadez, E., A. N. Bondar and D. J. Tobias (2010) Cou-
pling of retinal, protein, and water dynamics in squid rhodopsin.
Biophys. J. 99(7), 2200–2207.

106. Wolter, T., M. Elstner, S. Fischer, J. C. Smith and A. N. Bondar
(2015) Mechanism by which untwisting of retinal leads to produc-
tive bacteriorhodopsin photocycle states. J. Phys. Chem. B 119(6),
2229–2240.

107. Guerra, F., M. Siemers, C. Mielack and A. N. Bondar (2018)
Dynamics of long-distance hydrogen-bond networks in photosystem
II. J. Phys. Chem. B 122(17), 4625–4641.

108. Siemers, M., M. Lazaratos, K. Karathanou, F. Guerra, L. S. Brown
and A. N. Bondar (2019) Bridge: A graph-based algorithm to ana-
lyze dynamic H-bond networks in membrane proteins. J. Chem.
Theory Comput. 15(12), 6781–6798.

109. Kemmler, L., M. Ibrahim, H. Dobbek, A. Zouni and A. N. Bondar
(2019) Dynamic water bridging and proton transfer at a surface car-
boxylate cluster of photosystem II. Phys. Chem. Chem. Phys. 21
(45), 25449–25466.

110. Karathanou, K. and A. N. Bondar (2019) Using graphs of dynamic
hydrogen-bond networks to dissect conformational coupling in a
protein motor. J. Chem. Inf. Model. 59(5), 1882–1896.

111. Bondar, A. N. and H. Dau (2012) Extended protein/water H-bond
networks in photosynthetic water oxidation. Biochim. Biophys. Acta
– Bioenerg. 1817(8), 1177–1190.

112. Jónsson, H., G. Mills and K. W. Jacobsen (1998) Nudged Elastic
Band Method for Finding Minimum Energy Paths of Transitions.
In Classical and Quantum Dynamics in Condensed Phase Simula-
tions (Edited by B. J. Berne, G. Ciccotti and D. F. Coker), pp.
385–404.World Scientific.

113. Maragliano, L., A. Fischer, E. Vanden-Eijnden and G. Ciccotti
(2006) String method in collective variables: minimum free
energy paths and Isocommittor surfaces. J. Chem. Phys. 125(2),
024106.

114. Dı́az Leines, G. and B. Ensing (2012) Path finding on high-dimen-
sional free energy landscapes. Phys. Rev. Lett. 109(2), 020601.
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Gonzalez, N. Ferré, H. L. Luk, H. Kandori and M. Olivucci (2016)
Toward automatic rhodopsin modeling as a tool for high-throughput
computational photobiology. J. Chem. Theory Comput. 12(12),
6020–6034.
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170. Pedraza-González, L., M. D. C. Marı́n, A. N. Jorge, T. D. Ruck, X.
Yang, A. Valentini, M. Olivucci and L. De Vico (2020) Web-
ARM: A web-based interface for the automatic construction of
QM/MM models of rhodopsins. J. Chem. Inf. Model. 60(3),
1481–1493.

171. Chen, W., H. Sidky and A. L. Ferguson (2019) Capabilities and
limitations of time-lagged autoencoders for slow mode discovery in
dynamical systems. J. Chem. Phys. 151(6), 064123.

172. Korol, V., P. Husen, E. Sjulstok, C. Nielsen, I. Friis, A. Frederik-
sen, A. B. Salo and I. A. Solov’yov (2020) Introducing VIKING:
A novel online platform for multiscale modeling. ACS Omega 5(2),
1254–1260.

173. Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E.
Villa, C. Chipot, R. D. Skeel, L. Kalé and K. Schulten (2005) Scal-
able molecular dynamics with NAMD. J. Comput. Chem. 26(16),
1781–1802.

174. Case, D. A., T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.
M. Merz, A. Onufriev, C. Simmerling, B. Wang and R. J. Woods
(2005) The Amber biomolecular simulation programs. J. Comput.
Chem. 26(16), 1668–1688.

175. Solov’yov, I. A., A. V. Yakubovich, P. V. Nikolaev, I. Volkovets
and Solov’yov, A. V. (2012) MesoBioNano explorer-A universal
program for multiscale computer simulations of complex molecular
structure and dynamics. J. Comput. Chem. 33(30), 2412–2439.

176. Van Der Spoel, D., E. Lindahl, B. Hess, G. Groenhof, A. E. Mark
and H. J. C. Berendsen (2005) GROMACS: Fast, flexible, and free.
J. Comput. Chem. 26(16), 1701–1718.

177. Frisch, M., G. Trucks and H. Schlegel. G. S.-T. is no correspond-
ing; 2013, undefined. Gaussian 03, Revision C02; Gaussian Inc,
Wallingford, CT, 2004.

178. Schmidt, M. W., K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S.
Su, T. L. Windus, M. Dupuis and J. A. Montgomery (1993) Gen-
eral atomic and molecular electronic structure system. J. Comput.
Chem. 14(11), 1347–1363.

179. Aidas, K., C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman,
O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov,
U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernán-
dez, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C.
Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E.
Hjertenæs, S. Høst, I. M. Høyvik, M. F. Iozzi, B. Jansı́k, H. J. A.
Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjær-
gaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kong-
sted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I.
Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P.
Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Paw-
lowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T.
A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A.
S. de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K.
Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M.
Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen,
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H.
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Schütz (2012) Molpro: A general-purpose quantum chemistry pro-
gram package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(2),
242–253. http://classic.chem.msu.su/gran/gamess/index.html

268 Maria-Andrea Mroginski et al.

http://classic.chem.msu.su/gran/gamess/index.html


AUTHOR BIOGRAPHIES

Maria-Andrea Mrogin-
ski studied physics at the
Universidad Nacional del
Nordeste in Argentina. As
DAAD scholar, she per-
formed her PhD simulta-
neously at the Max
Planck Institute für
Strahlenchemie (Ger-
many) and at the Univer-
sity of the La Plata
(Argentina) on Resonance
Raman spectra of various
compound via experimen-
tal and computational
approaches under the
guidance of Prof. Hilde-
brandt, Dr. Mark and Dr.
Della-Vedova. After a
Postdoc in Portugal, she
became 2004 junior group
leader at the TU-Berlin

and later, 2009, junior professor for molecular modeling at the same
institution. 2015 she was appointed to a W2-professor position in
biomolecular modeling at TU-Berlin.

Igor Schapiro has stud-
ied Chemistry at the
University of Duisburg-
Essen. He obtained a
Ph.D. under the supervi-
sion of Prof. Volker Buss.
At the postdoctoral stage,
he worked with Prof.
Massimo Olivucci at
Bowling Green State
University, with Prof.
Frank Neese at the Max
Planck Institute for Chem-
ical Energy Conversion in
Mülheim, and with Prof.
Stefan Haacke at the
Institute of Physics and
Chemistry of Materials of
Strasbourg. In 2015, he
became Senior Lecturer
and in 2020 Associate

Professor at the Institute of Chemistry at The Hebrew University of Jer-
usalem. His research focuses on the Computational Photochemistry and
the method development.

Photochemistry and Photobiology, 2021, 97 269


