116 research outputs found
Psychanalyse et addictions sans substances
International audienceCe travail tente de répondre à la question suivante : la psychanalyse est-elle capable de fournir une explication à l'addiction sans substance ? Freud a traité indirectement de cette psychopathologie dans plusieurs articles étagés entre 1920 et 1937, mais la réponse passe aujourd'hui par l'élucidation de ce que l'on entend par " une pathologie du lien ". Celle-ci se caractérise par son aspect totalitaire, la perte de liberté qu'elle entraßne, la dépendance à un objet unique et une soumission inconsciente à l'instinct de mort (thanatos) par le biais de " la compulsion de répétition "
Moored observations of mesoscale features in the Cape Basin: characteristics and local impacts on water mass distributions
The eastern side of the South Atlantic Meridional overturning circulation
Basin-wide Array (SAMBA) along 34.5° S is used to assess the
nonlinear, mesoscale dynamics of the Cape Basin. This array presently
consists of current meter moorings and bottom mounted Current and Pressure recording Inverted Echo
Sounders (CPIES)
deployed across the continental slope. These data, available from September
2014 to December 2015, combined with satellite altimetry allow us to
investigate the characteristics and the impact of mesoscale dynamics on local
water mass distribution and cross-validate the different data sets. We
demonstrate that the moorings are affected by the complex dynamics of the
Cape Basin involving Agulhas rings, cyclonic eddies and anticyclonic eddies
from the Agulhas Bank and the South Benguela upwelling front and filaments.
Our analyses show that exchange of water masses happens through the advection
of water by mesoscale eddies but also via wide water mass intrusions
engendered by the existence of intense dipoles. These complex dynamics induce
strong intra-seasonal upper-ocean velocity variations and water mass
exchanges between the shelf and the open ocean but also across the
subantarctic and subtropical waters. This work presents the first independent
observations comparison between full-depth moorings and CPIES data sets
within the eastern South Atlantic region that gives some evidence of eastern
boundary buoyancy anomalies associated with migrating eddies. It also
highlights the need to continuously sample the full water depth as
inter-basin exchanges occur intermittently and affect the whole water column.</p
Perspectives on Anaphylaxis Epidemiology in the United States with New Data and Analyses
Anaphylaxis incidence rates and time trends in the United States have been reported using different data sources and selection methods. Larger studies using diagnostic coding have inherent limitations in sensitivity and specificity. In contrast, smaller studies using chart reviews, including reports from single institutions, have better case characterization but suffer from reduced external validity due to their restricted nature. Increasing anaphylaxis hospitalization rates since the 1990s have been reported abroad. However, we report no significant overall increase in the United States. There have been several reports of increasing anaphylaxis rates in northern populations in the United States, especially in younger people, lending support to the suggestion that higher anaphylaxis rates occur at higher latitudes. We analyzed anaphylaxis hospitalization rates in comparably sized northern (New York) and southern (Florida) states and found significant time trend differences based on age. This suggests that the relationship of latitude to anaphylaxis incidence is complex
The South Atlantic meridional overturning circulation and mesoscale eddies in the first GO-SHIP section at 34.5°S
This is the final version. Available from Wiley via the DOI in this record.âŻThe data from the MSM60 cruise are available at: https://doi.org/10.2312/cr_msm60. ADT data were downloaded from http://marine.copernicus.eu/, SST from https://podaac.jpl.nasa.gov/, eddy tracking from
https://vesg.ipsl.upmc.fr/thredds/catalog/IPSLFS/rlaxe/catalog.html?data set=DatasetScanIPSLFS/rlaxe/
Database_ South_Atl.zip. GO-SHIP datasets were downloaded from http://cchdo.ucsd.edu.The variability of the Atlantic meridional overturning circulation (AMOC) has considerable impacts on the global climate system. Past studies have shown that changes in the South Atlantic control the stability of the AMOC and drive an important part of its variability. That is why significant resources have been invested in a South (S)AMOC observing system. In January 2017, the RV Maria S. Merian conducted the first GO-SHIP hydrographic transect along the SAMOC-Basin Wide Array (SAMBA) line at 34.5°S in the South Atlantic. This paper presents estimates of meridional volume, freshwater (MFT), and heat (MHT) transports through the line using the slow varying geostrophic density field and direct velocity observations. An upper and an abyssal overturning cell are identified with a strength of 15.64 ± 1.39 Sv and 2.4 ± 1.6 Sv, respectively. The net northward MHT is 0.27 ± 0.10 PW, increasing by 0.12 PW when we remove the observed mesoscale eddies with a climatology derived from the Argo floats data set. We attribute this change to an anomalous predominance of cold core eddies during the cruise period. The highest velocities are observed in the western boundary, within the Brazil and the Deep Western Boundary currents. These currents appear as a continuous deep jet located 150 km off the slope squeezed between two cyclonic eddies. The zonal changes in water masses properties and velocity denote the imprint of exchange pathways with both the Southern and the Indian oceans.TOEddies CNES-TOSCASouth African NRFANII-Campus FranceCooperative Institute for Marine and Atmospheric Studies (CIMAS)NOAA Atlantic Oceanographic and Meteorological LaboratorySao Paulo State Research FoundationSouth African National Research FoundationGerman Federal Ministry of Education and Research (BMBF)Department of Environment, Forestry and Fisherie
Anesthesia advanced circulatory life support
The constellation of advanced cardiac life support (ACLS) events, such as gas embolism, local anesthetic overdose, and spinal bradycardia, in the perioperative setting differs from events in the pre-hospital arena. As a result, modification of traditional ACLS protocols allows for more specific etiology-based resuscitation.
Perioperative arrests are both uncommon and heterogeneous and have not been described or studied to the same extent as cardiac arrest in the community. These crises are usually witnessed, frequently anticipated, and involve a rescuer physician with knowledge of the patient's comorbidities and coexisting anesthetic or surgically related pathophysiology. When the health care provider identifies the probable cause of arrest, the practitioner has the ability to initiate medical management rapidly.
Recommendations for management must be predicated on expert opinion and physiological understanding rather than on the standards currently being used in the generation of ACLS protocols in the community. Adapting ACLS algorithms and considering the differential diagnoses of these perioperative events may prevent cardiac arrest
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ââGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
EURECâŽA
The science guiding the EURECâŽA campaign and its measurements is presented. EURECâŽA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic â eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECâŽA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200âkm) and larger (500âkm) scales, roughly 400âh of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10â000 profiles), lower atmosphere (continuous profiling), and along the airâsea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECâŽA explored â from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation â are presented along with an overview of EURECâŽA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
EURECâŽA
The science guiding the EURECâŽA campaign and its measurements is presented. EURECâŽA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic â eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECâŽA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200âkm) and larger (500âkm) scales, roughly 400âh of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10â000 profiles), lower atmosphere (continuous profiling), and along the airâsea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECâŽA explored â from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation â are presented along with an overview of EURECâŽA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
- âŠ