37 research outputs found

    Lifting the differentiation embargo

    Get PDF
    Effective differentiation therapy for acute myeloid leukemia (AML) has been restricted to a small subset of patients with one defined genetic abnormality. Using an unbiased small molecule screen, Sykes et al. now identify a mechanism of de-repression of differentiation in several models of AML driven by distinct genetic drivers

    A new pedigree with thrombomodulin-associated coagulopathy in which delayed fibrinolysis is partially attenuated by co-inherited TAFI deficiency

    Get PDF
    ACKNOWLEDGEMENTS We thank NIHR BioResource volunteers for their participation, and gratefully acknowledge NIHR BioResource centres, NHS Trusts and staff for their contribution. We thank the National Institute for Health Research and NHS Blood and Transplant. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. S.K.W. was supported during this work by the Medical Research Council (MR/K023489/1) and is now funded through an NIHR-funded Academic Clinical Lectureship. K.D. is supported as a HSST trainee by NHS Health Education England. N.J.M. and C.S.W. are supported by the British Heart Foundation (PG/15/82/31721). J.C.M. is a fellow of the Research Foundation Flanders (FWO Vlaanderen; 1137717N). A.D.M. is supported by the NIHR Biomedical Research Centre at the University Hospitals Bristol National Health Service Foundation Trust and the University of Bristol. We thank Prof Paul Declerck and Prof Ann Gils, University Leuven, Belgium for the kind gift of the MA-T12D11 antibody. We acknowledge technical assistance from Dorien Leenaerts, University of Antwerp, Belgium and Michela Donnarumma, University of Aberdeen, UK.Peer reviewedPublisher PD

    Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Dual inhibition of BRD4 and MDM2 cooperate to eradicate AML

    No full text
    There is a crucial requirement for novel therapies for Acute Myeloid Leukemia (AML). Bromodomain and extra-terminal domain (BET) inhibitors are emerging as active therapeutic agents for hematopoietic malignancies. Pharmacological inhibition of BET bromodomains targets malignant cells by preventing reading of acetylated lysine residues, thus disrupting chromatin-mediated signal transduction, which reduces transcription at oncogenic loci. However, although early phase clinical trials have shown BET inhibitors possess single agent activity against AML (Dombret et al., 2014), complete remission (CR) rates are low and effective combination partners are therefore needed to fully exploit the therapeutic potential of these non-genotoxic agents. The first aim of this thesis was to demonstrate single agent activity of BET inhibition against a panel of human AML cell lines, followed by testing if cell death with single agent BET inhibition could be enhanced by treatment with the addition of the standard therapies cytarabine (AraC) or azacytidine. We found BET inhibition to be toxic in a dose dependent manner against human AML cell lines, and cell death was enhanced by the addition of AraC. However, this was only found to achieve a synergistic combination index at a one fixed dose ratio in one AML cell line, with additive effects seen in others. Although a heterogeneous disease, most AML retains wild type TP53. However, TP53 is often rendered functionally deficient by over-expression of MDM2. Restoring the TP53 response though MDM2 antagonism is therefore potentially beneficial to most AML subtypes. We therefore hypothesized that dual inhibition of MDM2 and BET would be synthetic lethal to TP53 wild type AML. In comparison with the combination of BET inhibition with AraC, we found that the combination of the MDM2 antagonist nutlin-3 with a BET-inhibitor (CPI203, Constellation Pharmaceuticals), was synergistically toxic against a variety of TP53 wild type human AML cell lines across several fixed dose ratios, and the combination superior to the single agents when tested on primary murine AML samples. Given this combination of BET inhibition with MDM2 antagonism proved the most effective combination strategy in terms of cell kill, we then sought to asses the molecular basis of the combination’s synergy. Firstly we asked if the drugs were synergising at the level of their respective targets, i.e. if the BET inhibitor CPI203 in combination with nutlin-3 stabilises TP53 more effectively than single agent nutlin-3 or if the drug combination abrogates MYC more than single agent CPI203. This was not the case, and so we then investigated if the drugs were synergising at the level of the target genes of these key hubs, and through an RNA-seq analysis demonstrated that TP53 target genes were up-regulated by the drug combination. Given the synergy obtained against several types of AML in vitro on human cell lines with these two non-genotoxic agents, we were keen to test if this could be replicated in vivo. To evaluate the combination in vivo, we used a Trib-2 driven primary AML where leukemogenesis is induced through inhibition of C/EBPα. Treatment was commenced in all mice (n=40), post confirmation of disease engraftment. Three mice from each treatment group were sacrificed after 48hrs and cells sorted for GFP to perform RNA seq in this in vivo setting. After 21 days of treatment all mice were sacrificed (n= 27, one vehicle control succumbed to disease 15 days post engraftment). End of treatment results demonstrated superior in vivo efficacy of dual inhibition of MDM2 and BET in comparison with controls in eradicating AML, p<0.0001. Importantly, normal haematopoiesis was spared - as evidenced by normal full blood counts and comparable myeloid, B-cell and T-cell populations with our C57bl6 wild type controls. RNA-seq of the murine blasts revealed that many more genes significantly (FDR<0.05) changed expression in the combination treated mice than single agent treated mice. The TP53 pathway was the most common up-stream regulator of genes changing expression post combination treatment, p<0.0001. The combination affected many more genes in the p53 pathway than RG7112 alone (120 genes versus 20 genes respectively), in line with our in vitro results. Ultimately our conclusion is that this combination of BET and MDM2 inhibition is effective and superior to single agent therapy on all TP53 wild type AMLs tested, both in vitro and in vivo. In both contexts this is associated with potentiating the TP53 response and this could be relevant to many patients with TP53 wild type AML. Work on this combination is on-going and we are aiming to take this novel combination forward to a clinical trial in 2017
    corecore