184 research outputs found

    National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-Versus-Host Disease: III. The 2014 Biomarker Working Group Report

    Get PDF
    Biology-based markers to confirm or aid in the diagnosis or prognosis of chronic GVHD after allogeneic hematopoietic cell transplantation (HCT) or monitor its progression are critically needed to facilitate evaluation of new therapies. Biomarkers have been defined as any characteristic that is objectively measured and evaluated as an indicator of a normal biological or pathogenic process, a pharmacologic response to a therapeutic intervention. Applications of biomarkers in chronic GVHD clinical trials or patient management include: a) diagnosis and assessment of chronic GVHD disease activity, including distinguishing irreversible damage from continued disease activity, b) prognostic risk to develop chronic GVHD, and c) prediction of response to therapy. Sample collection for chronic GVHD biomarkers studies should be well-documented following established quality control guidelines for sample acquisition, processing, preservation and testing, at intervals that are both calendar- and event-driven. The consistent therapeutic treatment of subjects and standardized documentation needed to support biomarker studies are most likely to be provided in prospective clinical trials. To date, no chronic GVHD biomarkers have been qualified for utilization in clinical applications. Since our previous chronic GVHD Biomarkers Working Group report in 2005, an increasing number of chronic GVHD candidate biomarkers are available for further investigation. This paper provides a four-part framework for biomarker investigations: identification, verification, qualification, and application with terminology based on Food and Drug Administration and European Medicines Agency guidelines

    Genome-Wide Association Study in a Lebanese Cohort Confirms PHACTR1 as a Major Determinant of Coronary Artery Stenosis

    Get PDF
    The manifestation of coronary artery disease (CAD) follows a well-choreographed series of events that includes damage of arterial endothelial cells and deposition of lipids in the sub-endothelial layers. Genome-wide association studies (GWAS) of multiple populations with distinctive genetic and lifestyle backgrounds are a crucial step in understanding global CAD pathophysiology. In this study, we report a GWAS on the genetic basis of arterial stenosis as measured by cardiac catheterization in a Lebanese population. The locus of the phosphatase and actin regulator 1 gene (PHACTR1) showed association with coronary stenosis in a discovery experiment with genome wide data in 1,949 individuals (rs9349379, OR = 1.37, p = 1.57×10−5). The association was replicated in an additional 2,547 individuals (OR = 1.31, p = 8.85×10−6), leading to genome-wide significant association in a combined analysis (OR = 1.34, p = 8.02×10−10). Results from this GWAS support a central role of PHACTR1 in CAD susceptibility irrespective of lifestyle and ethnic divergences. This association provides a plausible component for understanding molecular mechanisms involved in the formation of stenosis in cardiac vessels and a potential drug target against CAD

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Detecting longitudinal patterns of daily smoking following drastic cigarette reduction

    Get PDF
    To enhance prolonged smoking cessation or reduction, a better understanding of the process of change is needed. This study examines daily smoking rates following the end of an intensive smoking reduction program originally designed to evaluate the relationship of tobacco biomarkers with reduced levels of smoking. A novel pattern-oriented approach called time series-based typology is used to detect homogeneous smoking patterns in time-intensively (i.e., 40 occasions) observed smokers (n = 57), who were predominantly Caucasian (94.7%), male (52.6%), and on average 47.9 years old (SD = 11.3). The majority of the smokers exhibited a change in their daily smoking behavior over the course of 40 days with 47.4% increasing and 40.4% decreasing the number of cigarettes smoked per day, which is contrary to the results a group level approach would have found. Very few smokers (12.3%) maintained their average smoking rate, and exhibited an externally controlled smoking pattern. Trajectory type could be predicted by temporally proximal motivation and self-efficacy variables ((F(4, 106) =3.46, p = .011, η2 = .115), underscoring their importance in maintaining reduced smoking rates. Time series-based typology demonstrated good sensitivity to the identification of meaningfully different trajectories

    Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot

    Get PDF
    We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10−7) and replicated convincingly (P = 3.9 × 10−5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10−11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10−7) and replicated convincingly (P = 1.2 × 10−5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10−11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TO

    Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool.</p> <p>Methods</p> <p>We sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3).</p> <p>Results</p> <p>Biallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10 patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel.</p> <p>Conclusions</p> <p>Based on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.</p

    CD4CD8αα Lymphocytes, A Novel Human Regulatory T Cell Subset Induced by Colonic Bacteria and Deficient in Patients with Inflammatory Bowel Disease

    Get PDF
    It has become evident that bacteria in our gut affect health and disease, but less is known about how they do this. Recent studies in mice showed that gut Clostridium bacteria and their metabolites can activate regulatory T cells (Treg) that in turn mediate tolerance to signals that would ordinarily cause inflammation. In this study we identify a subset of human T lymphocytes, designated CD4CD8αα T cells that are present in the surface lining of the colon and in the blood. We demonstrate Treg activity and show these cells to be activated by microbiota; we identify F. prausnitzii, a core Clostridium strain of the human gut microbiota, as a major inducer of these Treg cells. Interestingly, there are fewer F. prausnitzii in individuals suffering from inflammatory bowel disease (IBD), and accordingly the CD4CD8αα T cells are decreased in the blood and gut of patients with IBD. We argue that CD4CD8αα colonic Treg probably help control or prevent IBD. These data open the road to new diagnostic and therapeutic strategies for the management of IBD and provide new tools to address the impact of the intestinal microbiota on the human immune system

    Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations

    Get PDF
    Recent genome-wide association studies have identified five loci (BIN1, CLU, CR1, EXOC3L2 and PICALM) as genetic determinants of Alzheimer’s disease (AD). We attempted to confirm the association between these genes and the AD risk in three contrasting European populations (from Finland, Italy and Spain). Since CLU and CR1 had already been analyzed in these populations, we restricted our investigation to BIN1, EXO2CL3 and PICALM. In a total of 2,816 AD cases and 2,706 controls, we unambiguously replicated the association of rs744373 (for BIN1) and rs541458 (for PICALM) polymorphisms with the AD risk (OR=1.26, 95% CI [1.15-1.38], p=2.9x10-7, and OR=0.80, 95% CI [0.74-0.88], p=4.6x10-7, respectively). In a meta-analysis, rs597668 (EXOC3L2) was also associated with the AD risk, albeit to a lesser extent (OR=1.19, 95% CI [1.06-1.32], p=2.0x10-3). However, this signal did not appear to be independent of APOE. In conclusion, we confirmed that BIN1 and PICALM are genetic determinants of AD, whereas the potential involvement of EXOC3L2 requires further investigation

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus

    Infantile Convulsions with Paroxysmal Dyskinesia (ICCA Syndrome) and Copy Number Variation at Human Chromosome 16p11

    Get PDF
    BACKGROUND: Benign infantile convulsions and paroxysmal dyskinesia are episodic cerebral disorders that can share common genetic bases. They can be co-inherited as one single autosomal dominant trait (ICCA syndrome); the disease ICCA gene maps at chromosome 16p12-q12. Despite intensive and conventional mutation screening, the ICCA gene remains unknown to date. The critical area displays highly complicated genomic architecture and is the site of deletions and duplications associated with various diseases. The possibility that the ICCA syndrome is related to the existence of large-scale genomic alterations was addressed in the present study. METHODOLOGY/PRINCIPAL FINDINGS: A combination of whole genome and dedicated oligonucleotide array comparative genomic hybridization coupled with quantitative polymerase chain reaction was used. Low copy number of a region corresponding to a genomic variant (Variation_7105) located at 16p11 nearby the centromere was detected with statistical significance at much higher frequency in patients from ICCA families than in ethnically matched controls. The genomic variant showed no apparent difference in size and copy number between patients and controls, making it very unlikely that the genomic alteration detected here is ICCA-specific. Furthermore, no other genomic alteration that would directly cause the ICCA syndrome in those nine families was detected in the ICCA critical area. CONCLUSIONS/SIGNIFICANCE: Our data excluded that inherited genomic deletion or duplication events directly cause the ICCA syndrome; rather, they help narrowing down the critical ICCA region dramatically and indicate that the disease ICCA genetic defect lies very close to or within Variation_7105 and hence should now be searched in the corresponding genomic area and its surrounding regions
    corecore