1,980 research outputs found

    Structure of DNA-Functionalized Dendrimer Nanoparticles

    Full text link
    Atomistic molecular dynamics simulations have been carried out to reveal the characteristic features of ethylenediamine (EDA) cored protonated poly amido amine (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) that are functionalized with single stranded DNAs (ssDNAs). The four ssDNA strands that are attached via alkythiolate [-S (CH2)6-] linker molecule to the free amine groups on the surface of the PAMAM dendrimers observed to undergo a rapid conformational change during the 25 ns long simulation period. From the RMSD values of ssDNAs, we find relative stability in the case of purine rich ssDNA strands than pyrimidine rich ssDNA strands. The degree of wrapping of ssDNA strands on the dendrimer molecule was found to be influenced by the charge ratio of DNA and the dendrimer. As G4 dendrimer contains relatively more positive charge than G3 dendrimer, we observe extensive wrapping of ssDNAs on the G4 dendrimer. The ssDNA strands along with the linkers are seen to penetrate the surface of the dendrimer molecule and approach closer to the center of the dendrimer indicating the soft sphere nature of the dendrimer molecule. The effective radius of DNA-functionalized dendrimer nanoparticle was found to be independent of base composition of ssDNAs and was observed to be around 19.5 {\AA} and 22.4 {\AA} when we used G3 and G4 PAMAM dendrimer as the core of the nanoparticle respectively. The observed effective radius of DNA-functionalized dendrimer molecule apparently indicates the significant shrinkage in the structure that has taken place in dendrimer, linker and DNA strands. As a whole our results describe the characteristic features of DNA-functionalized dendrimer nanoparticle and can be used as strong inputs to design effectively the DNA-dendrimer nanoparticle self-assembly for their active biological applications.Comment: 13 pages, 10 figures, 3 Table

    Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis

    Get PDF
    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands

    Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV

    Get PDF
    Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with pT0.5p_{\rm T}\geq0.5 GeV/c in η0.8|\eta|\leq0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (NchN_{\rm ch}) is reported for events with different pTp_{\rm T} scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low NchN_{\rm ch}, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean pTp_{\rm T} with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.Comment: 21 pages, 9 captioned figures, 3 tables, authors from page 16, published version, figures from http://aliceinfo.cern.ch/ArtSubmission/node/308

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Observation of a charged charmoniumlike structure in e+e(DDˉ)±πe^+e^- \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp at s=4.26\sqrt{s}=4.26GeV

    Full text link
    We study the process e+e(DDˉ)±πe^+e^- \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp at a center-of-mass energy of 4.26GeV using a 827pb1^{-1} data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be (137±9±15)(137\pm9\pm15)pb. We observe a structure near the (DDˉ)±(D^{*} \bar{D}^{*})^{\pm} threshold in the π\pi^\mp recoil mass spectrum, which we denote as the Zc±(4025)Z^{\pm}_c(4025). The measured mass and width of the structure are (4026.3±2.6±3.7)(4026.3\pm2.6\pm3.7)MeV/c2^2 and (24.8±5.6±7.7)(24.8\pm5.6\pm7.7)MeV, respectively. Its production ratio σ(e+eZc±(4025)π(DDˉ)±π)σ(e+e(DDˉ)±π)\frac{\sigma(e^+e^-\to Z^{\pm}_c(4025)\pi^\mp \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp)}{\sigma(e^+e^-\to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp)} is determined to be 0.65±0.09±0.060.65\pm0.09\pm0.06. The first uncertainties are statistical and the second are systematic.Comment: 7 pages, 4 figures, 1 table; version accepted to be published in PR

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161
    corecore