750 research outputs found
Photoconductance Quantization in a Single-Photon Detector
We have made a single-photon detector that relies on photoconductive gain in
a narrow electron channel in an AlGaAs/GaAs 2-dimensional electron gas. Given
that the electron channel is 1-dimensional, the photo-induced conductance has
plateaus at multiples of the quantum conductance 2e/h. Super-imposed on
these broad conductance plateaus are many sharp, small, conductance steps
associated with single-photon absorption events that produce individual
photo-carriers. This type of photoconductive detector could measure a single
photon, while safely storing and protecting the spin degree of freedom of its
photo-carrier. This function is valuable for a quantum repeater that would
allow very long distance teleportation of quantum information.Comment: 4 pages, 4 figure
Subgap conductivity in SIN-junctions of high barrier transparency
We investigate the current-voltage characteristics of high-transparency
superconductor-insulator-normal metal (SIN) junctions with the specific tunnel
resistance below 30 kOhm per square micron. The junctions were fabricated from
different superconducting and normal conducting materials, including Nb, Al,
AuPd and Cu. The subgap leakage currents were found to be appreciably larger
than those given by the standard tunnelling model. We explain our results using
the model of two-electron tunnelling in the coherent diffusive transport
regime. We demonstrate that even in the high-transparency SIN-junctions, a
noticeable reduction of the subgap current can be achieved by splitting a
junction into several submicron sub-junctions. These structures can be used as
nonlinear low-noise shunts in Rapid-Single-Flux-Quantum (RSFQ) circuitry for
controlling Josephson qubits.Comment: 6 pages, 5 figures, 1 tabl
Density Waves in Layered Systems with Fermionic Polar Molecules
A layered system of two-dimensional planes containing fermionic polar
molecules can potentially realize a number of exotic quantum many-body states.
Among the predictions, are density-wave instabilities driven by the anisotropic
part of the dipole-dipole interaction in a single layer. However, in typical
multilayer setups it is reasonable to expect that the onset and properties of a
density-wave are modified by adjacent layers. Here we show that this is indeed
the case. For multiple layers the critical strength for the density-wave
instability decreases with the number of layers. The effect depends on density
and is more pronounced in the low density regime. The lowest solution of the
instability corresponds to the density waves in the different layers being
in-phase, whereas higher solutions have one or several adjancet layers that are
out of phase. The parameter regime needed to explore this instability is within
reach of current experiments.Comment: 7 pages, 4 figures. Final version in EPJD, EuroQUAM special issue
"Cold Quantum Matter - Achievements and Prospects
Deep electronic states in ion-implanted Si
In this paper we present an overview of the deep states present after ion-implantation by various species into n-type silicon, measured by Deep Level Transient Spectroscopy (DLTS) and high resolution Laplace DLTS (LDLTS). Both point and small extended defects are found, prior to any anneal, which can therefore be the precursors to more detrimental defects such as end of range loops. We show that the
ion mass is linked to the concentrations of defects that are observed, and the presence of small interstitial clusters directly after ion implantation is established by comparing their behaviour with that of electrically active stacking faults. Finally, future
applications of the LDLTS technique to ion-implanted regions in Si-based devices are outlined.</p
Bound Chains of Tilted Dipoles in Layered Systems
Ultracold polar molecules in multilayered systems have been experimentally
realized very recently. While experiments study these systems almost
exclusively through their chemical reactivity, the outlook for creating and
manipulating exotic few- and many-body physics in dipolar systems is
fascinating. Here we concentrate on few-body states in a multilayered setup. We
exploit the geometry of the interlayer potential to calculate the two- and
three-body chains with one molecule in each layer. The focus is on dipoles that
are aligned at some angle with respect to the layer planes by means of an
external eletric field. The binding energy and the spatial structure of the
bound states are studied in several different ways using analytical approaches.
The results are compared to stochastic variational calculations and very good
agreement is found. We conclude that approximations based on harmonic
oscillator potentials are accurate even for tilted dipoles when the geometry of
the potential landscape is taken into account.Comment: 10 pages, 6 figures. Submitted to Few-body Systems special issue on
Critical Stability, revised versio
Thermodynamics of Dipolar Chain Systems
The thermodynamics of a quantum system of layers containing perpendicularly
oriented dipolar molecules is studied within an oscillator approximation for
both bosonic and fermionic species. The system is assumed to be built from
chains with one molecule in each layer. We consider the effects of the
intralayer repulsion and quantum statistical requirements in systems with more
than one chain. Specifically, we consider the case of two chains and solve the
problem analytically within the harmonic Hamiltonian approach which is accurate
for large dipole moments. The case of three chains is calculated numerically.
Our findings indicate that thermodynamic observables, such as the heat
capacity, can be used to probe the signatures of the intralayer interaction
between chains. This should be relevant for near future experiments on polar
molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Superconducting fluctuation corrections to ultrasound attenuation in layered superconductors
We consider the temperature dependence of the sound attenuation and sound
velocity in layered impure metals due to superconducting fluctuations of the
order parameter above the critical temperature. We obtain the dependence on
material properties of these fluctuation corrections in the hydrodynamic limit,
where the electron mean free path is much smaller than the wavelength of sound
and where the electron collision rate is much larger than the sound frequency.
For longitudinal sound propagating perpendicular to the layers, the open Fermi
surface condition leads to a suppression of the divergent contributions to
leading order, in contrast with the case of paraconductivity. The leading
temperature dependent corrections, given by the Aslamazov-Larkin, Maki-Thompson
and density of states terms, remain finite as T->Tc. Nevertheless, the
sensitivity of new ultrasonic experiments on layered organic conductors should
make these fluctuations effects measurable.Comment: 13 pages, 6 figures. Accepted for PRB. Added discussion on incoherent
interlayer tunneling and other small modifications suggested by referee
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Dimers, Effective Interactions, and Pauli Blocking Effects in a Bilayer of Cold Fermionic Polar Molecules
We consider a bilayer setup with two parallel planes of cold fermionic polar
molecules when the dipole moments are oriented perpendicular to the planes. The
binding energy of two-body states with one polar molecule in each layer is
determined and compared to various analytic approximation schemes in both
coordinate- and momentum-space. The effective interaction of two bound dimers
is obtained by integrating out the internal dimer bound state wave function and
its robustness under analytical approximations is studied. Furthermore, we
consider the effect of the background of other fermions on the dimer state
through Pauli blocking, and discuss implications for the zero-temperature
many-body phase diagram of this experimentally realizable system.Comment: 18 pages, 10 figures, accepted versio
- …
