80 research outputs found

    Factors associated with parental recognition of a child's overweight status - a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Very few studies have evaluated the association between a child's lifestyle factors and their parent's ability to recognise the overweight status of their offspring. The aim of this study was to analyze the factors associated with a parent's ability to recognise their own offspring's overweight status.</p> <p>Methods</p> <p>125 overweight children out of all 1,278 school beginners in Northern Finland were enrolled.</p> <p>Weight and height were measured in health care clinics. Overweight status was defined by BMI according to internationally accepted criteria. A questionnaire to be filled in by parents was delivered by the school nurses. The parents were asked to evaluate their offspring's weight status. The child's eating habits and physical activity patterns were also enquired about. Factor groups of food and physical activity habits were formed by factor analysis. Binary logistic regression was performed using all variables associated with recognition of overweight status in univariate analyses. The significant risk factors in the final model are reported using odds ratios (ORs) and their 95% confidence intervals (CIs).</p> <p>Results</p> <p>Fifty-seven percent (69/120) of the parents of the overweight children considered their child as normal weight. Child's BMI was positively associated with parental recognition of overweight (OR 3.59, CI 1.8 to 7.0). Overweight boys were less likely to be recognised than overweight girls (OR 0.14, CI 0.033 to 0.58). Child's healthy diet (OR 0.22, CI 0.091 to 0.54) and high physical activity (OR 0.29, CI 0.11 to 0.79) were inversely related to parental recognition of overweight status.</p> <p>Conclusions</p> <p>Child's healthy eating habits and physical activity are inversely related to parental recognition of their offspring's overweight. These should be taken into account when planning prevention and treatment strategies for childhood obesity.</p

    Life-Course Analysis of a Fat Mass and Obesity-Associated (FTO) Gene Variant and Body Mass Index in the Northern Finland Birth Cohort 1966 Using Structural Equation Modeling

    Get PDF
    The association between variation in the fat mass and obesity-associated (FTO) gene and adulthood body mass index (BMI; weight (kg)/height (m)2) is well-replicated. More thorough analyses utilizing phenotypic data over the life course may deepen our understanding of the development of BMI and thus help in the prevention of obesity. The authors used a structural equation modeling approach to explore the network of variables associated with BMI from the prenatal period to age 31 years (1965–1997) in 4,435 subjects from the Northern Finland Birth Cohort 1966. The use of structural equation modeling permitted the easy inclusion of variables with missing values in the analyses without separate imputation steps, as well as differentiation between direct and indirect effects. There was an association between the FTO single nucleotide polymorphism rs9939609 and BMI at age 31 years that persisted after controlling for several relevant factors during the life course. The total effect of the FTO variant on adult BMI was mostly composed of the direct effect, but a notable part was also arising indirectly via its effects on earlier BMI development. In addition to well-established genetic determinants, many life-course factors such as physical activity, in spite of not showing mediation or interaction, had a strong independent effect on BMI

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Association of vitamin D status with arterial blood pressure and hypertension risk : a mendelian randomisation study

    Get PDF
    Peer reviewe

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore