128 research outputs found

    Lionel Philipps; Le héros détrôné dans le Jonas de J. de Coras

    Get PDF
    Si l’épopée a été considérée au XVIIe siècle comme le genre littéraire par excellence que doit pratiquer la République des Lettres Françaises si elle veut acquérir ses lettres de noblesse, cela n’a pourtant pas eu pour conséquence la production d’œuvres jugées dignes de passer à la postérité. Les modèles antiques, Homère ou Virgile, étant inégalables, certains auteurs ont cherché l’originalité dans le décalage par rapport aux normes d’un genre alors strictement codifié, racontant en vers le d..

    Martial Poirson Les classiques ont-ils cru à leurs machines? La force du surnaturel dans La Devineresse ou les Faux enchantements (1679)

    Get PDF
    Pour M. Poirson, La Devineresse ou les Faux enchantements de Th. Corneille et Donneau de Visé apparaît comme l’apothéose du théâtre à machines en même temps qu’elle en dénonce le mode de fonctionnement reposant sur l’illusion. Se faisant l’écho de l’esprit libertin du XVIIe siècle, annonçant l’esprit philosophique et critique du XVIIIe, utilisant l’actualité politique et sociale, et mélangeant les genres dans une production à grand spectacle, l’œuvre pose le problème du statut de l’artifice d..

    Likely Correlation between Sources of Information and Acceptability of A/H1N1 Swine-Origin Influenza Virus Vaccine in Marseille, France

    Get PDF
    BACKGROUND: In France, there was a reluctance to accept vaccination against the A/H1N1 pandemic influenza virus despite government recommendation and investment in the vaccine programme. METHODS AND FINDINGS: We examined the willingness of different populations to accept A/H1N1 vaccination (i) in a French hospital among 3315 employees immunized either by in-house medical personnel or mobile teams of MDs and (ii) in a shelter housing 250 homeless persons. Google was used to assess the volume of enquiries concerning incidence of influenza. We analyzed the information on vaccination provided by Google, the website of the major French newspapers, and PubMed. Two trust Surveys were used to assess public opinion on the trustworthiness of people in different professions. Paramedics were significantly more reluctant to accept immunisation than qualified medical staff. Acceptance was significantly increased when recommended directly by MDs. Anecdotal cases of directly observed severe infections were followed by enhanced acceptance of paramedical staff. Scientific literature was significantly more in favour of vaccination than Google and French newspaper websites. In the case of the newspaper websites, information correlated with their recognised political reputations, although they would presumably claim independence from political bias. The Trust Surveys showed that politicians were highly dis-trusted in contrast with doctors and pharmacists who were considered much more trustworthy. CONCLUSIONS: The low uptake of the vaccine could reflect failure to convey high quality medical information and advice relating to the benefits of being vaccinated. We believe that the media and internet contributed to this problem by raising concerns within the general population and that failure to involve GPs in the control programme may have been a mistake. GPs are highly regarded by the public and can provide face-to-face professional advice and information. The top-down strategy of vaccine programme management and information delivered by the Ministry of Health could have aggravated the problem, because the general population does not always trust politicians

    Dark Matter Searches with the ANTARES Neutrino Telescope

    Get PDF
    [EN] The MOSCAB experiment (Materia OSCura A Bolle) uses the Geyser technique for dark matter search. The results of the first 0.5 kg mass prototype detector using superheated C3F8 liquid were very encouraging, achieving a 5 keV nuclear recoil threshold with high insensitivity to gamma radiation. Additionally, the technique seems to be easily scalable to higher masses for both in terms of complexity and costs, resulting in a very competitive technique for direct dark matter search, especially for the spin dependent case. Here, we report as well in the construction and commissioning of the big detector of 40 kg at the Milano-Bicocca University. The detector, the calibration tests and the evaluation of the background will be presented. Once demonstrated the functionality of the detector, it will be operated at the Gran Sasso National Laboratory in 2015.We acknowledge the financial support of the Spanish Ministerio de Ciencia e Innovación (MICINN) and Ministerio de Economía y Competitividad (MINECO), Grants FPA2012-37528-C02-02, and Consolider MultiDark CSD2009-00064, and of the Generalitat Valenciana, Grants ACOMP/2014/153 and PrometeoII/2014/079.Ardid Ramírez, M. (2016). Dark Matter Searches with the ANTARES Neutrino Telescope. Nuclear and Particle Physics Proceedings. 273:378-382. https://doi.org/10.1016/j.nuclphysbps.2015.09.054S37838227

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    SignificanceThere is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged 4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute; The Rockefeller University; the St. Giles Foundation; the NIH (Grants R01AI088364 and R01AI163029); the National Center for Advancing Translational Sciences; NIH Clinical and Translational Science Awards program (Grant UL1 TR001866); a Fast Grant from Emergent Ventures; Mercatus Center at George Mason University; the Yale Center for Mendelian Genomics and the Genome Sequencing Program Coordinating Center funded by the National Human Genome Research Institute (Grants UM1HG006504 and U24HG008956); the Yale High Performance Computing Center (Grant S10OD018521); the Fisher Center for Alzheimer’s Research Foundation; the Meyer Foundation; the JPB Foundation; the French National Research Agency (ANR) under the “Investments for the Future” program (Grant ANR-10-IAHU-01); the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (Grant ANR-10-LABX-62-IBEID); the French Foundation for Medical Research (FRM) (Grant EQU201903007798); the French Agency for Research on AIDS and Viral hepatitis (ANRS) Nord-Sud (Grant ANRS-COV05); the ANR GENVIR (Grant ANR-20-CE93-003), AABIFNCOV (Grant ANR-20-CO11-0001), CNSVIRGEN (Grant ANR-19-CE15-0009-01), and GenMIS-C (Grant ANR-21-COVR-0039) projects; the Square Foundation; Grandir–Fonds de solidarité pour l’Enfance; the Fondation du Souffle; the SCOR Corporate Foundation for Science; The French Ministry of Higher Education, Research, and Innovation (Grant MESRI-COVID-19); Institut National de la Santé et de la Recherche Médicale (INSERM), REACTing-INSERM; and the University Paris Cité. P. Bastard was supported by the FRM (Award EA20170638020). P. Bastard., J.R., and T.L.V. were supported by the MD-PhD program of the Imagine Institute (with the support of Fondation Bettencourt Schueller). Work at the Neurometabolic Disease lab received funding from Centre for Biomedical Research on Rare Diseases (CIBERER) (Grant ACCI20-767) and the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI Genomics). Work in the Laboratory of Virology and Infectious Disease was supported by the NIH (Grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1), a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The Infanta Leonor University Hospital supported the research of the Department of Internal Medicine and Allergology. The French COVID Cohort study group was sponsored by INSERM and supported by the REACTing consortium and by a grant from the French Ministry of Health (Grant PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (Grant RECOVER WP 6). This work was also partly supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research, NIH (Grants ZIA AI001270 to L.D.N. and 1ZIAAI001265 to H.C.S.). This program is supported by the Agence Nationale de la Recherche (Grant ANR-10-LABX-69-01). K.K.’s group was supported by the Estonian Research Council, through Grants PRG117 and PRG377. R.H. was supported by an Al Jalila Foundation Seed Grant (Grant AJF202019), Dubai, United Arab Emirates, and a COVID-19 research grant (Grant CoV19-0307) from the University of Sharjah, United Arab Emirates. S.G.T. is supported by Investigator and Program Grants awarded by the National Health and Medical Research Council of Australia and a University of New South Wales COVID Rapid Response Initiative Grant. L.I. reports funding from Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e co-morbidità”). This research was partially supported by the Instituto de Salud Carlos III (Grant COV20/0968). J.R.H. reports funding from Biomedical Advanced Research and Development Authority (Grant HHSO10201600031C). S.O. reports funding from Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development (Grant JP20fk0108531). G.G. was supported by the ANR Flash COVID-19 program and SARS-CoV-2 Program of the Faculty of Medicine from Sorbonne University iCOVID programs. The 3C Study was conducted under a partnership agreement between INSERM, Victor Segalen Bordeaux 2 University, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also supported by the Caisse Nationale d’Assurance Maladie des Travailleurs Salariés, Direction générale de la Santé, Mutuelle Générale de l’Education Nationale, Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Program “Cohortes et collections de données biologiques.” S. Debette was supported by the University of Bordeaux Initiative of Excellence. P.K.G. reports funding from the National Cancer Institute, NIH, under Contract 75N91019D00024, Task Order 75N91021F00001. J.W. is supported by a Research Foundation - Flanders (FWO) Fundamental Clinical Mandate (Grant 1833317N). Sample processing at IrsiCaixa was possible thanks to the crowdfunding initiative YoMeCorono. Work at Vall d’Hebron was also partly supported by research funding from Instituto de Salud Carlos III Grant PI17/00660 cofinanced by the European Regional Development Fund (ERDF/FEDER). C.R.-G. and colleagues from the Canarian Health System Sequencing Hub were supported by the Instituto de Salud Carlos III (Grants COV20_01333 and COV20_01334), the Spanish Ministry for Science and Innovation (RTC-2017-6471-1; AEI/FEDER, European Union), Fundación DISA (Grants OA18/017 and OA20/024), and Cabildo Insular de Tenerife (Grants CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). T.H.M. was supported by grants from the Novo Nordisk Foundation (Grants NNF20OC0064890 and NNF21OC0067157). C.M.B. is supported by a Michael Smith Foundation for Health Research Health Professional-Investigator Award. P.Q.H. and L. Hammarström were funded by the European Union’s Horizon 2020 research and innovation program (Antibody Therapy Against Coronavirus consortium, Grant 101003650). Work at Y.-L.L.’s laboratory in the University of Hong Kong (HKU) was supported by the Society for the Relief of Disabled Children. MBBS/PhD study of D.L. in HKU was supported by the Croucher Foundation. J.L.F. was supported in part by the Evaluation-Orientation de la Coopération Scientifique (ECOS) Nord - Coopération Scientifique France-Colombie (ECOS-Nord/Columbian Administrative department of Science, Technology and Innovation [COLCIENCIAS]/Colombian Ministry of National Education [MEN]/Colombian Institute of Educational Credit and Technical Studies Abroad [ICETEX, Grant 806-2018] and Colciencias Contract 713-2016 [Code 111574455633]). A. Klocperk was, in part, supported by Grants NU20-05-00282 and NV18-05-00162 issued by the Czech Health Research Council and Ministry of Health, Czech Republic. L.P. was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (Grant COVID-2020-12371617). I.M. is a Senior Clinical Investigator at the Research Foundation–Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies (PID); by the Katholieke Universiteit Leuven C1 Grant C16/18/007; by a Flanders Institute for Biotechnology-Grand Challenges - PID grant; by the FWO Grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. I.M. has received funding under the European Union’s Horizon 2020 research and innovation program (Grant Agreement 948959). E.A. received funding from the Hellenic Foundation for Research and Innovation (Grant INTERFLU 1574). M. Vidigal received funding from the São Paulo Research Foundation (Grant 2020/09702-1) and JBS SA (Grant 69004). The NH-COVAIR study group consortium was supported by a grant from the Meath Foundation.Peer reviewe

    Identification des gènes responsables du syndrome de Marinesco-Sjögren et d une forme d ataxie avec déficit en Coenzyme Q10

    No full text
    Par une stratégie de cartographie par homozygotie, nous avons identifié les gènes responsables de deux ataxies autosomiques récessives : le syndrome de Marinesco-Sjögren (MS) et une nouvelle forme d ataxie associée à un déficit en coenzyme Q10 (CoQ). Le syndrome MS est une affection congénitale multisystémique avec notamment la présence d une ataxie, d une myopathie et d une cataracte bilatérale. Nous avons localisé le gène en 5q31, et identifié en collaboration avec le Pr Lehesjoki des mutations dans le gène SIL1 codant pour un facteur d échange nucléotidique d une protéine chaperones HSP70. Puis, nous avons identifié des mutations d ADCK3 dans une nouvelle forme d ataxie. Les homologues d ADCK3 chez E. coli et S. cerevisiae (respectivement ubiB et abc1/coq8) sont impliqués dans la biosynthèse du CoQ. Nous avons montré que les patients présentent un déficit en CoQ et qu ADCK3 appartient à la super-famille des kinases atypiques .By homozygosity mapping, we have identified the genes responsible for two autosomal recessive ataxia : Marinesco-Sjögren syndrome (MS) and a new form of recessive ataxia associated with coenzyme Q10 (CoQ) deficit. MS syndrome is a multisystemic disease with the association of an ataxia, a myopathy and bilateral cataracts. We have localized the gene on chromosome 5q31, and in collaboration with Pr Lehesjoki, we have identified mutations in the gene SIL1 encoding for a nucleotide exchange factor for an HSP70 molecular chaperonne. We have also identified mutations in the gene ADCK3 in a new form of ataxia. ADCK3 bacteria and yeast homologs (ubiB and abc1/coq8 respectively) are involved in CoQ biosynthesis. We have shown that the patients dysplay CoQ deficit and that ADCK3 belongs to the protein kinases-like superfamily.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Identification des gènes responsables du syndrome de marinesco-Sjögren et d'une forme d'ataxie avec déficient en coenzyme Q10

    No full text
    Par une stratégie de cartographie par homozygotie, nous avons identifié les gènes responsables de deux ataxies autosomiques récessives: le syndrome de Marinesco-Sjögren (MS) et une nouvelle forme d ataxie associée à un déficit en coenzyme Q10 (CoQ). Le syndrome MS est une affection congénitale multisystémique avec notamment la présence d une ataxie, d une myopathie et d une cataracte bilatérale. Nous avons localisé le gène en 5q31, et identifié en collaboration avec le Pr Lehesjoki des mutations dans le gène SIL1 codant pour un facteur d échange nucléotidique d une protéine chaperones HSP70. Puis, nous avons identifié des mutations d ADCK3 dans une nouvelle forme d ataxie. Les homologues d ADCK3 chez E. coli et S. cerevisiae (respectivement ubiB et abc1/coq8) sont impliqués dans la biosynthèse du CoQ. Nous avons montré que les patients présentent un déficit en CoQ et qu ADCK3 appartient à la super-famille des kinases atypiques .By homozygosity mapping, we have identified the genes responsible for two autosomal recessive ataxia: Marinesco-Sjögren syndrome (MS) and a new form of recessive ataxia associated with coenzyme Q10 (CoQ) deficit. MS syndrome is a multisystemic disease with the association of an ataxia, a myopathy and bilateral cataracts. We have localized the gene on chromosome 5q31, and in collaboration with Pr Lehesjoki, we have identified mutations in the gene SIL1 encoding for a nucleotide exchange factor for an HSP70 molecular chaperonne. We have also identified mutations in the gene ADCK3 in a new form of ataxia. ADCK3 bacteria and yeast homologs (ubiB and abc1/coq8 respectively) are involved in CoQ biosynthesis. We have shown that the patients dysplay CoQ deficit and that ADCK3 belongs to the protein kinases-like superfamily.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF
    corecore