1,401 research outputs found
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
Branch Mode Selection during Early Lung Development
Many organs of higher organisms, such as the vascular system, lung, kidney,
pancreas, liver and glands, are heavily branched structures. The branching
process during lung development has been studied in great detail and is
remarkably stereotyped. The branched tree is generated by the sequential,
non-random use of three geometrically simple modes of branching (domain
branching, planar and orthogonal bifurcation). While many regulatory components
and local interactions have been defined an integrated understanding of the
regulatory network that controls the branching process is lacking. We have
developed a deterministic, spatio-temporal differential-equation based model of
the core signaling network that governs lung branching morphogenesis. The model
focuses on the two key signaling factors that have been identified in
experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well
as the SHH receptor patched (Ptc). We show that the reported biochemical
interactions give rise to a Schnakenberg-type Turing patterning mechanisms that
allows us to reproduce experimental observations in wildtype and mutant mice.
The kinetic parameters as well as the domain shape are based on experimental
data where available. The developed model is robust to small absolute and large
relative changes in the parameter values. At the same time there is a strong
regulatory potential in that the switching between branching modes can be
achieved by targeted changes in the parameter values. We note that the sequence
of different branching events may also be the result of different growth
speeds: fast growth triggers lateral branching while slow growth favours
bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is
sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio
DNA content of a functioning chicken kinetochore
© The Author(s) 2014. In order to understand the three-dimensional structure of the functional kinetochore in vertebrates, we require a complete list and stoichiometry for the protein components of the kinetochore, which can be provided by genetic and proteomic experiments. We also need to know how the chromatin-containing CENP-A, which makes up the structural foundation for the kinetochore, is folded, and how much of that DNA is involved in assembling the kinetochore. In this MS, we demonstrate that functioning metaphase kinetochores in chicken DT40 cells contain roughly 50 kb of DNA, an amount that corresponds extremely closely to the length of chromosomal DNA associated with CENP-A in ChIP-seq experiments. Thus, during kinetochore assembly, CENP-A chromatin is compacted into the inner kinetochore plate without including significant amounts of flanking pericentromeric heterochromatin. © 2014 The Author(s).Wellcome Trust [grant number 073915]; Wellcome Trust Centre for Cell Biology (core grant numbers 077707 and 092076); Darwin Trust of Edinburg
Solar Neutrino Measurements in Super-Kamiokande-IV
Upgraded electronics, improved water system dynamics, better calibration and
analysis techniques allowed Super-Kamiokande-IV to clearly observe very
low-energy 8B solar neutrino interactions, with recoil electron kinetic
energies as low as 3.49 MeV. Super-Kamiokande-IV data-taking began in September
of 2008; this paper includes data until February 2014, a total livetime of 1664
days. The measured solar neutrino flux is (2.308+-0.020(stat.) +
0.039-0.040(syst.)) x 106/(cm2sec) assuming no oscillations. The observed
recoil electron energy spectrum is consistent with no distortions due to
neutrino oscillations. An extended maximum likelihood fit to the amplitude of
the expected solar zenith angle variation of the neutrino-electron elastic
scattering rate in SK-IV results in a day/night asymmetry of
(-3.6+-1.6(stat.)+-0.6(syst.))%. The SK-IV solar neutrino data determine the
solar mixing angle as sin2 theta_12 = 0.327+0.026-0.031, all SK solar data
(SK-I, SK-II, SK III and SKIV) measures this angle to be sin2 theta_12 =
0.334+0.027-0.023, the determined mass-squared splitting is Delta m2_21 =
4.8+1.5-0.8 x10-5 eV2.Comment: Submitted to Physical Review D; 23 pages, 40 figure
Scattering Theory and -Symmetry
We outline a global approach to scattering theory in one dimension that
allows for the description of a large class of scattering systems and their
-, -, and -symmetries. In
particular, we review various relevant concepts such as Jost solutions,
transfer and scattering matrices, reciprocity principle, unidirectional
reflection and invisibility, and spectral singularities. We discuss in some
detail the mathematical conditions that imply or forbid reciprocal
transmission, reciprocal reflection, and the presence of spectral singularities
and their time-reversal. We also derive generalized unitarity relations for
time-reversal-invariant and -symmetric scattering
systems, and explore the consequences of breaking them. The results reported
here apply to the scattering systems defined by a real or complex local
potential as well as those determined by energy-dependent potentials, nonlocal
potentials, and general point interactions.Comment: Slightly expanded revised version, 38 page
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Linkage Mapping of Stem Saccharification Digestibility in Rice
Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties
Development of microspheres for biomedical applications: a review
An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented
Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV
We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201
- …
