3,628 research outputs found

    The urban Herring gull, foraging niche and interactions with humans

    Get PDF
    Gulls (Laridae) are of significant interest because of their use and breeding in urban environments, which has increased human-wildlife conflicts. However, there is a lack of information that summarises population trends in gulls, that is driving them towards conflicts with humans; the attitude towards gulls that the public has, especially in urban environments and the factors that determine those attitudes; and how gulls utilise the urban environment for reproductive success. In this thesis, I explore the literature around gull trends throughout the Western Hemisphere. Using a questionnaire, I attempt to collate information about the public’s attitude towards gulls, paired with spatial correlation to demonstrate geographic differences. I also use gull pellets and foraging effort to explore the niche of gulls, and test for differences between urban and rural birds. The findings show gull population changes are constant, and that public attitude is negative towards gulls, with age and knowledge about gulls effecting negative perceptions. I also demonstrate that rural and urban gulls have differing habitat use periodically through the breeding season but have commonality in foraging effort

    The mechanism by which potassium causes neurite retraction in lamprey descending neurons in cell culture

    Get PDF
    Abstract only availableSevere spinal cord injury (SCI) disrupts descending axons from reticulospinal (RS) neurons that project to the spinal cord. In most “higher” vertebrates, including humans, recovery is very minimal due to limited regeneration in the central nervous system, and paralysis is usually permanent below the injury site. In several lower vertebrates, including the lamprey, behavioral recovery is almost complete following SCI due to robust axonal regeneration. To study the cellular and molecular mechanisms that regulate axonal regeneration, neurons are often isolated in cell culture so that the factors that influence neurite outgrowth can be studied under controlled conditions. In our laboratory, we have developed a cell culture system in which neurite outgrowth of RS neurons can be studied (Hong et al., 2002; Ryan et al., 2004). Application of glutamate, an excitatory neurotransmitter, to the growth cones of RS neurons results in neurite retraction, presumably because of depolarization, calcium influx, and an increase in intracellular calcium. Intracellular calcium is thought to be one of the important regulators of the rate and direction of neurite outgrowth. Calcium influx could result from at least two different channels: chemically-gated channels (e.g. NMDA channels); or voltage-gated calcium channels. The purpose of the present study was to determine if calcium influx via voltage-gated calcium channels is sufficient to elicit neurite retraction. First, focal application of a 31 M potassium to growth cones of DiI-labeled RS neurons in culture to open voltage-gated calcium channels significantly reduced neurite growth rates, including neurite retraction, compared to pre-control periods. Second, 2 of Co++ or 300 M Cd++, which block calcium channels, abolished potassium-induced neurite retraction. In conclusion, the results suggest that calcium influx via voltage-gated calcium channels is sufficient to cause neurite retraction. Other experiments will determine if influx through voltage-gated channels is necessary for glutamate to elicit neurite outgrowth. Determination of the factors that regulate neurite outgrowth may provide information about the mechanism by which RS neurons regenerate their axons following spinal cord injury and restore locomotor function.Life Sciences Undergraduate Research Opportunity Progra

    Drift-induced deceleration of Solar Energetic Particles

    Get PDF
    We investigate the deceleration of Solar Energetic Particles (SEPs) during their propagation from the Sun through interplanetary space, in the presence of weak to strong scattering in a Parker spiral configuration, using relativistic full orbit test particle simulations. The calculations retain all three spatial variables describing particles’ trajectories, allowing to model any transport across the magnetic field. Large energy change is shown to occur for protons, due to the combined effect of standard adiabatic deceleration and a significant contribution from particle drift in the direction opposite to that of the solar wind electric field. The latter drift-induced deceleration is found to have a stronger effect for SEP energies than for galactic cosmic rays. The kinetic energy of protons injected at 1 MeV is found to be reduced by between 35 and 90% after four days, and for protons injected at 100 MeV by between 20 and 55%. The overall degree of deceleration is a weak function of the scattering mean free path, showing that, although adiabatic deceleration plays a role, a large contribution is due to particle drift. Current SEP transport models are found to account for drift-induced deceleration in an approximate way and their accuracy will need to be assessed in future work

    Are you watching me? The role of audience and object novelty in overimitation

    Get PDF
    This study tested whether overimitation is subject to an audience effect, and whether it is modulated by object novelty. A sample of 86 4- to 11-year-old children watched a demonstrator open novel and familiar boxes using sequences of necessary and unnecessary actions. The experimenter then observed the children, turned away, or left the room while the children opened the box. Children copied unnecessary actions more when the experimenter watched or when she left, but they copied less when she turned away. This parallels infant studies suggesting that turning away is interpreted as a signal of disengagement. Children displayed increased overimitation and reduced efficiency discrimination when opening novel boxes compared with familiar boxes. These data provide important evidence that object novelty is a critical component of overimitation

    Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    Get PDF
    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations

    Detection and correction of underassigned rotational symmetry prior to structure deposition

    Get PDF
    An X-ray structural model can be reassigned to a higher symmetry space group using the presented framework if its noncrystallographic symmetry operators are close to being exact crystallographic relationships. About 2% of structures in the Protein Data Bank can be reclassified in this way

    Exploiting spatial sparsity for multi-wavelength imaging in optical interferometry

    Full text link
    Optical interferometers provide multiple wavelength measurements. In order to fully exploit the spectral and spatial resolution of these instruments, new algorithms for image reconstruction have to be developed. Early attempts to deal with multi-chromatic interferometric data have consisted in recovering a gray image of the object or independent monochromatic images in some spectral bandwidths. The main challenge is now to recover the full 3-D (spatio-spectral) brightness distribution of the astronomical target given all the available data. We describe a new approach to implement multi-wavelength image reconstruction in the case where the observed scene is a collection of point-like sources. We show the gain in image quality (both spatially and spectrally) achieved by globally taking into account all the data instead of dealing with independent spectral slices. This is achieved thanks to a regularization which favors spatial sparsity and spectral grouping of the sources. Since the objective function is not differentiable, we had to develop a specialized optimization algorithm which also accounts for non-negativity of the brightness distribution.Comment: This version has been accepted for publication in J. Opt. Soc. Am.

    Solar energetic particle access to distant longitudes through turbulent field-line meandering

    Get PDF
    Context. Current solar energetic particle (SEP) propagation models describe the effects of interplanetary plasma turbulence on SEPs as diffusion, using a Fokker-Planck (FP) equation. However, FP models cannot explain the observed fast access of SEPs across the average magnetic field to regions that are widely separated in longitude within the heliosphere without using unrealistically strong cross-field diffusion. Aims. We study whether the recently suggested early non-diffusive phase of SEP propagation can explain the wide SEP events with realistic particle transport parameters. Methods. We used a novel model that accounts for the SEP propagation along field lines that meander as a result of plasma turbulence. Such a non-diffusive propagation mode has been shown to dominate the SEP cross-field propagation early in the SEP event history. We compare the new model to the traditional approach, and to SEP observations. Results. Using the new model, we reproduce the observed longitudinal extent of SEP peak fluxes that are characterised by a Gaussian profile with σ = 30 − 50◦ , while current diffusion theory can only explain extents of 11◦ with realistic diffusion coefficients. Our model also reproduces the timing of SEP arrival at distant longitudes, which cannot be explained using the diffusion model. Conclusions. The early onset of SEPs over a wide range of longitudes can be understood as a result of the effects of magnetic fieldline random walk in the interplanetary medium and requires an SEP transport model that properly describes the non-diffusive early phase of SEP cross-field propagation

    NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution

    Get PDF
    An established iceberg module, ICB, is used interactively with the Nucleus for European Modelling of the Ocean (NEMO) ocean model in a new implementation, NEMO–ICB (v1.0). A 30-year hindcast (1976–2005) simulation with an eddy-permitting (0.25°) global configuration of NEMO–ICB is undertaken to evaluate the influence of icebergs on sea ice, hydrography, mixed layer depths (MLDs), and ocean currents, through comparison with a control simulation in which the equivalent iceberg mass flux is applied as coastal runoff, a common forcing in ocean models. In the Southern Hemisphere (SH), drift and melting of icebergs are in balance after around 5 years, whereas the equilibration timescale for the Northern Hemisphere (NH) is 15–20 years. Iceberg drift patterns, and Southern Ocean iceberg mass, compare favourably with available observations. Freshwater forcing due to iceberg melting is most pronounced very locally, in the coastal zone around much of Antarctica, where it often exceeds in magnitude and opposes the negative freshwater fluxes associated with sea ice freezing. However, at most locations in the polar Southern Ocean, the annual-mean freshwater flux due to icebergs, if present, is typically an order of magnitude smaller than the contribution of sea ice melting and precipitation. A notable exception is the southwest Atlantic sector of the Southern Ocean, where iceberg melting reaches around 50% of net precipitation over a large area. Including icebergs in place of coastal runoff, sea ice concentration and thickness are notably decreased at most locations around Antarctica, by up to ~ 20% in the eastern Weddell Sea, with more limited increases, of up to ~ 10% in the Bellingshausen Sea. Antarctic sea ice mass decreases by 2.9%, overall. As a consequence of changes in net freshwater forcing and sea ice, salinity and temperature distributions are also substantially altered. Surface salinity increases by ~ 0.1 psu around much of Antarctica, due to suppressed coastal runoff, with extensive freshening at depth, extending to the greatest depths in the polar Southern Ocean where discernible effects on both salinity and temperature reach 2500 m in the Weddell Sea by the last pentad of the simulation. Substantial physical and dynamical responses to icebergs, throughout the global ocean, are explained by rapid propagation of density anomalies from high-to-low latitudes. Complementary to the baseline model used here, three prototype modifications to NEMO–ICB are also introduced and discussed
    corecore