4,532 research outputs found

    Theoretical Analysis of SPH in Simulating Free-surface Viscous flows

    Get PDF
    A theoretical analysis on the performance, close to a free surface, of the most used SPH formulations for Newtonian viscous terms is carried out in this paper. After an introduction of the SPH formalism, the SPH expressions for the viscous term in the momentum equation are analyzed in their continuous form. Using a Taylor expansion, a reformulation of those expressions is undertaken which allows to characterize the behavior of the viscous term close to the free surface. Under speciïŹc ïŹ‚ow conditions, we show that the viscous term close to the free surface is singular when the spatial resolution is increased. This problem is in essence related to the incompleteness of the kernel function close to the free surface and appears for all the formulations considered. In order to assess the impact of such singular behavior, an analysis of the global energy dissipation is carried out, which shows that such a free-surface singularity vanishes when the integral quantities are considered. Not with standing that, not all the SPH viscous formulas allow the correct evaluation of the energy dissipation rate and, consequently, they may lead to an inaccurate modelling of viscous free-surface ïŹ‚ows

    Anemia and brain oxygen after severe traumatic brain injury

    Get PDF
    Purpose: To investigate the relationship between hemoglobin (Hgb) and brain tissue oxygen tension (PbtO2) after severe traumatic brain injury (TBI) and to examine its impact on outcome. Methods: This was a retrospective analysis of a prospective cohort of severe TBI patients whose PbtO2 was monitored. The relationship between Hgb—categorized into four quartiles (≀9; 9-10; 10.1-11; >11g/dl)—and PbtO2 was analyzed using mixed-effects models. Anemia with compromised PbtO2 was defined as episodes of Hgb≀9g/dl with simultaneous PbtO211g/dl as the reference level, and controlling for important physiologic covariates (CPP, PaO2, PaCO2), Hgb≀9g/dl was the only Hgb level that was associated with lower PbtO2 (coefficient −6.53 (95% CI −9.13; −3.94), p<0.001). Anemia with simultaneous PbtO2<20mmHg, but not anemia alone, increased the risk of unfavorable outcome (odds ratio 6.24 (95% CI 1.61; 24.22), p=0.008), controlling for age, GCS, Marshall CT grade, and APACHE II score. Conclusions: In this cohort of severe TBI patients whose PbtO2 was monitored, a Hgb level no greater than 9g/dl was associated with compromised PbtO2. Anemia with simultaneous compromised PbtO2, but not anemia alone, was a risk factor for unfavorable outcome, irrespective of injury severit

    Star formation history of galaxies from z=0 to z=0.7 A backward approach to the evolution of star-forming galaxies

    Full text link
    We investigate whether the mean star formation activity of star-forming galaxies from z=0 to z=0.7 in the GOODS-S field can be reproduced by simple evolution models of these systems. In this case, such models might be used as first order references for studies at higher z to decipher when and to what extent a secular evolution is sufficient to explain the star formation history in galaxies. We selected star-forming galaxies at z=0 and at z=0.7 in IR and in UV to have access to all the recent star formation. We focused on galaxies with a stellar mass ranging between 10^{10} and 10^{11} M_sun for which the results are not biased by the selections. We compared the data to chemical evolution models developed for spiral galaxies and originally built to reproduce the main characteristics of the Milky Way and nearby spirals without fine-tuning them for the present analysis. We find a shallow decrease in the specific star formation rate (SSFR) when the stellar mass increases. The evolution of the SSFR characterizing both UV and IR selected galaxies from z=0 to z=0.7 is consistent with the models built to reproduce the present spiral galaxies. There is no need to strongly modify of the physical conditions in galaxies to explain the average evolution of their star formation from z=0 to z=0.7. We use the models to predict the evolution of the star formation rate and the metallicity on a wider range of redshift and we compare these predictions with the results of semi-analytical models.Comment: 14 pages, 10 figures. accepted for publication in Astronomy & Astrophysic

    Dehydrogenated polycyclic aromatic hydrocarbons and UV bump

    Full text link
    Recent calculations have shown that the UV bump at about 217.5 nm in the extinction curve can be explained by a complex mixture of PAHs in several charge states. Other studies proposed that the carriers are a restricted population made of neutral and singly-ionised dehydrogenated coronene molecules (C24Hn, n less than 3), in line with models of the hydrogenation state of interstellar PAHs predicting that medium-sized species are highly dehydrogenated. To assess the observational consequences of the latter hypothesis we have undertaken a systematic study of the electronic spectra of dehydrogenated PAHs. We use our first results to see whether such spectra show strong general trends upon dehydrogenation. We used state-of-the-art techniques in the framework of the density functional theory (DFT) to obtain the electronic ground-state geometries, and of the time- dependent DFT to evaluate the electronic excited-state properties. We computed the absorption cross-section of the species C24Hn (n=12,10,8,6,4,2,0) in their neutral and cationic charge-states. Similar calculations were performed for other PAHs and their fullydehydrogenated counterparts. pi electron energies are always found to be strongly affected by dehydrogenation. In all cases we examined, progressive dehydrogenation translates into a correspondingly progressive blue shift of the main electronic transitions. In particular, the pi-pi* collective resonance becomes broader and bluer with dehydrogenation. Its calculated energy position is therefore predicted to fall in the gap between the UV bump and the far-UV rise of the extinction curve. Since this effect appears to be systematic, it poses a tight observational limit on the column density of strongly dehydrogenated medium-sized PAHs.Comment: 5 pages, 7 figures, Astronomy & Astrophysics, in pres

    A search for diffuse bands in the circumstellar envelopes of post-AGB stars

    Full text link
    In this work we present the results of a systematic search for diffuse bands (DBs, hereafter) in the circumstellar envelopes of a carefully selected sample of post-AGB stars. We concentrated on the analysis of 9 of the DBs most commonly found in the interstellar medium. The strength of these features is determined using high resolution optical spectroscopy and the results obtained are compared with literature data on field stars affected only by interstellar reddening. Based on the weak features observed in the subsample of post-AGB stars dominated by circumstellar reddening we conclude that the carrier(s) of these DBs must not be present in the circumstellar environment of these sources, or at least not under the excitation conditions in which DBs are formed. The conclusion is applicable to all the post-AGB stars studied, irrespective of the dominant chemistry or the spectral type of the star considered. A detailed radial velocity analysis of the features observed in individual sources confirms this result, as the Doppler shifts measured are found to be consistent with an interstellar origin.Comment: Accepted for A&

    Carbon monoxide in the solar atmosphere I. Numerical method and two-dimensional models

    Full text link
    The radiation hydrodynamic code CO5BOLD has been supplemented with the time-dependent treatment of chemical reaction networks. Advection of particle densities due to the hydrodynamic flow field is also included. The radiative transfer is treated frequency-independently, i.e. grey, so far. The upgraded code has been applied to two-dimensional simulations of carbon monoxide (CO) in the non-magnetic solar photosphere and low chromosphere. For this purpose a reaction network has been constructed, taking into account the reactions which are most important for the formation and dissociation of CO under the physical conditions of the solar atmosphere. The network has been strongly reduced to 27 reactions, involving the chemical species H, H2, C, O, CO, CH, OH, and a representative metal. The resulting CO number density is highest in the cool regions of the reversed granulation pattern at mid-photospheric heights and decreases strongly above. There, the CO abundance stays close to a value of 8.3 on the usual logarithmic abundance scale with [H]=12 but is reduced in hot shock waves which are a ubiquitous phenomenon of the model atmosphere. For comparison, the corresponding equilibrium densities have been calculated, based on the reaction network but also under assumption of instantaneous chemical equilibrium by applying the Rybicki & Hummer (RH) code by Uitenbroek (2001). Owing to the short chemical timescales, the assumption holds for a large fraction of the atmosphere, in particular the photosphere. In contrast, the CO number density deviates strongly from the corresponding equilibrium value in the vicinity of chromospheric shock waves. Simulations with altered reaction network clearly show that the formation channel via hydroxide (OH) is the most important one under the conditions of the solar atmosphere.Comment: 15 pages, 6 figures, final version will contain online materia

    Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows

    Get PDF
    The theoretical formulation of the smoothed particle hydrodynamics (SPH) method deserves great care because of some inconsistencies occurring when considering free-surface inviscid flows. Actually, in SPH formulations one usually assumes that (i) surface integral terms on the boundary of the interpolation kernel support are neglected, (ii) free-surface conditions are implicitly verified. These assumptions are studied in detail in the present work for free-surface Newtonian viscous flow. The consistency of classical viscous weakly compressible SPH formulations is investigated. In particular, the principle of virtual work is used to study the verification of the free-surface boundary conditions in a weak sense. The latter can be related to the global energy dissipation induced by the viscous term formulations and their consistency. Numerical verification of this theoretical analysis is provided on three free-surface test cases including a standing wave, with the three viscous term formulations investigated

    Metal-Kondo insulating transitions and transport in one dimension

    Full text link
    We study two different metal-insulating transitions possibly occurring in one-dimensional Kondo lattices. First, we show how doping the pure Kondo lattice model in the strong-coupling limit, results in a Pokrovsky-Talapov transition. This produces a conducting state with a charge susceptibility diverging as the inverse of the doping, that seems in agreement with numerical datas. Second, in the weak-coupling region, Kondo insulating transitions arise due to the consequent renormalization of the backward Kondo scattering. Here, the interplay between Kondo effect and electron-electron interactions gives rise to significant phenomena in transport, in the high-temperature delocalized (ballistic) regime. For repulsive interactions, as a perfect signature of Kondo localization, the conductivity is found to decrease monotonically with temperature. When interactions become attractive, spin fluctuations in the electron (Luttinger-type) liquid are suddenly lowered. The latter is less localized by magnetic impurities than for the repulsive counterpart, and as a result a large jump in the Drude weight and a maximum in the conductivity arise in the entrance of the Kondo insulating phase. These can be viewed as remnants of s-wave superconductivity arising for attractive enough interactions. Comparisons with transport in the single impurity model are also performed. We finally discuss the case of randomly distributed magnetic defects, and the applications on persistent currents of mesoscopic rings.Comment: 21 pages, two columns, 5 figures and 1 table; Final version: To appear in Physical Review
    • 

    corecore