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The theoretical formulation of the smoothed particle hydrodynamics (SPH) method deserves great care because
of some inconsistencies occurring when considering free-surface inviscid flows. Actually, in SPH formulations
one usually assumes that (i) surface integral terms on the boundary of the interpolation kernel support are
neglected, (ii) free-surface conditions are implicitly verified. These assumptions are studied in detail in the
present work for free-surface Newtonian viscous flow. The consistency of classical viscous weakly compressible
SPH formulations is investigated. In particular, the principle of virtual work is used to study the verification of
the free-surface boundary conditions in a weak sense. The latter can be related to the global energy dissipation
induced by the viscous term formulations and their consistency. Numerical verification of this theoretical analysis
is provided on three free-surface test cases including a standing wave, with the three viscous term formulations
investigated.
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I. INTRODUCTION

Free-surface flows are of interest in many engineering
fields such as ocean and coastal engineering, hydraulics,
oil and gas, process engineering, etc. In these flows the
free-surface presence is a dominant part of the flow behavior.
In particular, the nonlinear kinematic and dynamic conditions
applying at this free boundary constitute a challenging part
in the simulation of these flows. Simulation methods of
free-surface flows are numerous and varied, depending mainly
on the magnitude of the dynamics of the flow at hand. These
methods range from, e.g., spectral methods in potential flow
for slow-dynamics propagation of gravity waves, level-set or
volume-of-fluid methods for fluid-body interactions, up to
Lagrangian meshless methods for simulating violent flows
implying large deformation of the free surface including
fragmentations, reconnections, formation of jets and drops,
etc., and intense impacts on partially immersed bodies.

The smoothed particle hydrodynamics (SPH) is a numerical
method which has become widely applied to free-surface flows
in recent years. Due its Lagrangian and meshless nature,
its theoretical and numerical analysis is difficult and has
not been addressed much in the literature. Among the few
works available on this topic some deal with the general
consistency and convergence of the method; see Mas-Gallic
and Raviart [1], Di Lisio et al. [2,3], or Ben Moussa et al. [4].
Regarding more specifically the viscous free-surface flows at
aim in the present work, a few papers address the consistency
of SPH formulations of the viscous term; see, e.g., Español and
Revenga [5] or Hu and Adams [6], but without the presence
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of a free surface. Conversely, Colagrossi et al. [7] recently
addressed the consistency of the SPH formulation in presence
of a free surface, but for inviscid flow.

The objective of the present paper is thus to consider
the consistency of the SPH formulations for a viscous flow
in presence of a free surface. This consistency applies to
two different aspects which are linked together: the implicit
verification of the free-surface boundary conditions, especially
the dynamic one, and the approximation of the viscous term of
the Navier-Stokes equations, the consistency of the remaining
terms having been studied already in [7] for an inviscid
free-surface flow. These two aspects depend on the choice of
the SPH formulation of the viscous stress tensor. In the present
work the two most used SPH formulations are investigated,
the one by Monaghan and Gingold [8], and the one by Morris
et al. [9].

The methodology followed in the present investigation is
first to analyze the theoretical consistency of the different
viscous formulations once smoothing SPH operators are
applied to the differential operators at the continuous level.
In a second step it is checked on numerical test cases whether
these theoretical findings hold after discretization. To perform
the theoretical analysis we follow the same procedure as
in [7], namely we study through the principle of virtual
works the verification of the free-surface boundary conditions
in a weak sense, and the consistency of the formulations.
This consistency is analyzed both locally at the free surface
and integrally over the domain in terms of viscous energy
dissipation introduced.

The paper is divided as follows. In Secs. II and III the
governing equations and related boundary conditions are
introduced in the context of the SPH method. Then the
approximation of the viscous stress tensor is studied in Sec. IV.
We first introduce the principle of virtual works and the
link is made between the smoothed viscous operator and the
verification of the free-surface dynamic boundary condition.
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From this procedure we derive a new SPH formulation of the
viscous term. Then the most classical SPH formulations of
this term, respectively by Monaghan and Gingold [8] and
by Morris et al. [9], are analyzed in detail, especially in
terms of local convergence at the free surface. In Sec. V
the global consistency of the different viscous formulations
investigated is addressed in terms of correctness of the energy
dissipated within the flow due to viscous stresses. Finally,
in last Sec. VI the different theoretical findings of previous
sections are checked after discretization on different numerical
free-surface test cases including the widely studied standing
wave problem.

II. GOVERNING EQUATIONS

A. Field equations

We place ourselves in the context of the so-called “weakly
compressible” or “pseudocompressible” approach, which con-
sists of modeling a compressible flow to simulate a problem
in which the compressibility is negligible. In the context of
free-surface flows this approach is classically adopted in SPH
formulations. Actually, in truly incompressible formulations
the pressure solution is obtained through an implicit method
involving linear system solution, and requires one to impose
the dynamic free-surface condition at the system boundary. In a
meshless context the latter means to first detect the free surface,
which is not an easy operation; see, e.g., [10]. Conversely, in
weakly compressible Lagrangian formulations a fully explicit
method is used and free-surface conditions are supposed to be
implicitly verified. This assumption is strong and was studied
in detail in [7] for inviscid flow.

Here we follow the methodology of [7] for viscous flow.
Nonetheless, it must be emphasized that all the conclusions
related to the viscous term itself in the present work do not
depend on the weak-compressibility assumption and therefore
stand for a truly-incompressible formulation as well.

The Navier-Stokes equations for a barotropic fluid in
Lagrangian formalism read⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Dρ

Dt
+ ρ ∇ · u = 0,

Du
Dt

= g + ∇·T
ρ

,

p = c2
0 (ρ − ρ0),

(2.1)

where ρ is the fluid density, ρ0 is the reference density, p is the
pressure, c0 is the reference sound velocity, and g is external
volume forces. The flow velocity u is defined as the material
derivative of a fluid element position r:

Dr
Dt

= u. (2.2)

T is the stress tensor of a Newtonian fluid:

T = ( −p + λ trD ) 1 + 2 μD, (2.3)

with D being the rate of strain tensor, i.e., D = (∇u +
∇uT )/2. Finally, μ and λ are the viscosity coefficients. For
the analysis which follows, it is useful to consider the viscous
part of the stress tensor:

V = λ trD 1 + 2 μD. (2.4)

The divergence of the stress tensor thus writes

∇ · T = −∇p + ∇ · V
= −∇p + (λ + μ)∇(∇ · u) + μ∇2u. (2.5)

1. Boundary conditions

The previous field equations apply on a domain �, which
is bounded by ∂� composed of solid boundaries ∂�B and free
surfaces ∂�F . Two boundary conditions (BCs) apply on free
surfaces of kinematic and dynamic nature. The kinematic free-
surface BC is naturally verified in the Lagrangian formalism
adopted. The dynamic free-surface BC (hereinafter DFSBC)
expresses the continuity of stresses across the free surface.
Assuming that surface tension is negligible, a “free” surface
does not stand either normal stresses or tangential shear
stresses. For a Newtonian fluid, by denoting such stress field
as t , the DFSBC reads

t = T · n = (−p + λ trD) n + 2 μD · n = 0, (2.6)

where n is the free-surface normal unit vector. After normal
and tangential projections, considering that trD = ∇ · u and
n · D · n = n · ∂ u/∂ n, Eq. (2.6) becomes

p = λ ∇ · u + 2μ n · ∂ u/∂ n, (2.7)

τ · D · n = 0, (2.8)

where τ is a unit vector of the free-surface tangent plane.
As a consequence of Eq. (2.7) the pressure field is generally
discontinuous across the free surface.

III. CONTINUOUS SPH FORMULATION

The SPH approximation of the field equations (2.1) is based
on a smoothing based on a convolution integral over the fluid
domain �. A generic field f is thus approximated by

〈f 〉(r) =
∫

�

f (r ′) W (r ′ − r; h) dV ′, (3.9)

where W (r ′ − r; h) is a weight function which, in practical
applications, has a compact support �(r) of characteristic
length h often referred to as the “smoothing length;” see Fig. 1.

1. A comprehensive review of the SPH method can be found
in [11] for more detailed information.

The weight function W (r ′ − r,h), often referred to as “ker-
nel,” is positive, centered in r , and monotonously decreases
with the distance s = | r − r ′|. The kernel considered in this
study is spherical, thus depending only on s. Hereinafter we
adopt the notation W (r ′ − r), the dependence on h being
implicitly assumed. For Eq. (3.9) to be consistent (when
h → 0) the kernel W must integrate to 1; see, e.g., [7]:∫

�

W (r ′ − r; h) dV ′ = 1. (3.10)

Such a property is not satisfied when the kernel support is not
fully included inside the fluid domain. This occurs for particles
close to ∂�F ; see Fig. 1. In that case approximation (3.9) is
not consistent.
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FIG. 1. (Color online) Configurations of the kernel support �(r)
with respect to the fluid domain boundary.

This approximation for the gradient of a generic field f

reads

〈∇f 〉(r) =
∫

�

∇′f (r ′) W (r ′ − r) dV ′, (3.11)

with the prime in ∇′ denoting a derivative with respect to
variable r ′. Integrating by parts one gets

〈∇f 〉(r) =
∫

�

f (r ′)∇W (r ′ − r) dV ′

+
∫

∂�

f (r ′) W (r ′ − r)n′ dS ′, (3.12)

with n′ a unit vector normal to ∂� pointing outwards
�, and where the sphericity of the kernel was used:
∇′W (r − r ′) = −∇W (r − r ′). Note that the derivation now
applies to the kernel function, which is known analytically,
permitting us to access an approximation of ∇f from the
knowledge of f . Further details can be found in [7] where an
in-depth analysis of the smoothed differential operators and
the surface integrals is provided.

When the smoothing procedure is applied to the differential
operators of Eq. (2.1), the weakly compressible SPH continu-
ous formulation of the Navier-Stokes equations is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dρ

Dt
+ ρ 〈∇ · u〉 = 0,

Du
Dt

= g − 〈∇p〉
ρ

+ 〈∇·V 〉
ρ

,

p = c2
0 (ρ − ρ0),

Dr
Dt

= u,

(3.13)

where the notation 〈f 〉(r) has been shortened into 〈f 〉. As
shown in [7] for inviscid flow, the compatibility between the
approximation formulas chosen in the momentum and mass
conservation equations ensures global energy conservation
of the system. This energy consistency can be investigated
through the verification of the principle of virtual work (PVW).
In the presence of a free surface, global energy conservation
means that no energy gain or loss occurs through that “free”
surface, which is coherent with it not being submitted to any
stress. In that case the DFSBC is thus verified in a weak sense.
In the present work we extend this analysis to viscous flow.

IV. SMOOTHED VISCOUS TERM

In SPH-related literature the smoothed viscous term is
modeled in many different ways. In the following paragraph,
we first introduce the general structure of the viscous term in

the SPH formalism through the PVW. Then, we focus on two
of the most used formulations, namely (i) the Monaghan and
Gingold [8] formulation, (ii) the Morris et al. formulation [9].

A. Derivation of the smoothed viscous term through the
principle of virtual work

The principle of virtual works expresses the equality
between the work of the internal forces and the one of the
external forces due to the virtual displacement field δ �w. In its
general form it reads (see, e.g., [12,13])

∫
∂�

T · n · δw dS︸ ︷︷ ︸
©1

+
∫

�

ρ

(
f − Du

Dt

)
· δw dV︸ ︷︷ ︸

©2

=
∫

�

T : D(δw) dV︸ ︷︷ ︸
©3

. (4.14)

The first two terms ©1 and ©2 represent the work of the stress
tensor respectively on the fluid boundary and in the fluid
domain. Their difference produces a variation of the internal
energy ©3 due to the virtual displacement field. The balance
of the three integral terms guarantees the conservation of
both the linear and angular momenta [14], and global energy
conservation of the system. In the present analysis we are not
interested in the work due to the presence of solid boundaries
which is therefore considered equal to zero. By essence, on
the free surface ∂�FTn = 0, and ρ(g − Du/Dt) = −∇ · T .
Thus expression (4.14) becomes

−
∫

�

(∇ · T ) · δw dV︸ ︷︷ ︸
©2

=
∫

�

T : D(δw) dV︸ ︷︷ ︸
©3

, (4.15)

which expresses the balance between the work of the stress
tensor and the variation of the internal energy, both inside the
domain. Thus to satisfy the DFSBC (2.6) in a weak sense, i.e.,
integrally, within the SPH scheme, it is sufficient to verify the
equality (4.15) using the smoothed operators instead of the
ordinary ones:

−
∫

�

〈∇ · T 〉 · δw dV =
∫

�

T : 〈D(δw)〉 dV. (4.16)

In this case, no condition is explicitly enforced on that surface.
After Eq. (2.3) is substituted into Eq. (4.15) the viscous and
the pressure components can be treated separately. The latter
ones were already discussed in [7], so only the viscous ones
are considered in the following. Equation (4.15) now reads

−
∫

�

〈∇ · V 〉 · δw dV =
∫

�

V : 〈D(δw)〉 dV. (4.17)
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To ensure conservation of the angular momentum, the
smoothed operator 〈D〉 can be evaluated as (see [14])

〈D(δw)〉 = 1

2

∫
�

[(δw′ − δw) ⊗ (L · ∇W )

+ (L · ∇W ) ⊗ (δw′ − δw)]dV ′, (4.18)

L =
[ ∫

�

(r − r ′) ⊗ ∇W dV ′
]−1

,

where L is a renormalization matrix which guarantees that
〈D(δw)〉 is identically zero if δw is a pure rotation. Substituting
Eq. (IV A) into Eq. (4.17) and following the procedure shown
in [7], we get the smoothed operator:

〈∇ · V 〉PVW =
∫

�

(
L′ V ′ + LV ) · ∇W dV ′. (4.19)

Since Eq. (4.19) has been derived from the PVW, it represents
a natural way to approximate the viscous term of the governing
equations (3.13), ensuring the conservation of the linear
and angular momenta and the verification of the DFSBC
in a weak sense. From a practical point of view, such a
formulation is quite demanding in terms of CPU time since it
requires a double integration and involves matrix operations.
Nonetheless, as shown in the last section of the paper, the use of
the formulation (4.19), hereinafter PVWF, permits us to get a
higher accuracy with respect to the other viscous formulations.

B. Monaghan and Gingold formulation

Assuming that the viscosity coefficients are constant all
over the fluid domain, the continuous Monaghan and Gingold
formulation (hereinafter MGF) of the viscous term is

〈∇ · V 〉MG(r)

= μK

∫
�

[u(r ′) − u(r)] · (r ′ − r)

|r ′ − r|2 ∇W (r ′ − r) dV ′, (4.20)

where K is a parameter depending on the spatial dimension
(K = 6,8,10, respectively, in one, two, and three dimensions).
Using the relations found by Español and Revenga [5] for the
estimation of the second derivatives in SPH, inside the domain
this formulation is consistent as

lim
h→0

〈∇ · V 〉MG = μ∇2u + 2 μ∇(∇ · u). (4.21)

At the free surface, this is a priori not true anymore since the
kernel support is incomplete, so that surface integrals do not
vanish in the approximations of the differential operators such
as Eq. (3.12). It is known that in such situations uncorrected
SPH approximations of first derivatives, such as Eq. (3.12),
are generally nonconsistent. Especially, it is proved in [7]
that the pressure gradient formulation classically used in SPH
solvers is neither convergent nor divergent at the free surface,
whereas the velocity divergence is linearly convergent at the
free surface for inviscid flow. Since the present work deals
with viscous flows such an analysis must thus be performed
for the second-order derivative of the velocity field. To study
the consistency of the formulations of this viscous term at
the free surface, we thus first follow the procedure proposed
by [5] in taking into account the incompleteness of the kernel
support and the presence of surface integrals. Then we analyze

the consequences on the local and global consistency of the
viscous SPH formulations studied.

1. Taylor expansion of the Monaghan and Gingold formulation

We follow here the procedure by Español and Revenga [5]
applied to the MGF in introducing different tensors which will
be useful for analysis of consistency at the free surface. Thanks
to the kernel isotropy its gradient can be written in the compact
form (4.22):

∇ W (r ′ − r) = − r ′ − r
s

∂W

∂s
, s = |r ′ − r|. (4.22)

If the origin of the frame of reference is set at r , the integral
(4.20) takes the following compact form:

〈∇ · V 〉MG = −μK

∫
�

(u′ − u) · r ′

|r ′|3 r ′ ∂W

∂s
dV ′, (4.23)

where u(r) and u(r ′) have been respectively shortened into u
and u′. A Taylor expansion of the velocity field is performed:

u′ − u = ∇u
∣∣

r · r ′ + 1
2 r ′ · H∣∣

r · r ′ + O(|r ′|3), (4.24)

in which H|r denotes the Hessian tensor:

[H|r ]ijk = ∂2ui

∂ rj ∂ rk

. (4.25)

Hereinafter ∇u|r is shortened into ∇u and H|r into H. From
Eqs. (4.23) and (4.24) comes

〈∇ · VMG〉
μ

= −K

∫
�

∇u :
r ′ ⊗ r ′

|r ′|3 r ′ ∂W

∂s
dV ′

−K

2

∫
�

H :
r ′ ⊗ r ′ ⊗ r ′

|r ′|3 · r ′ ∂W

∂s
dV ′ +O(h).

(4.26)

Since r ′ ⊗ r ′ is a symmetric tensor, the rate of deformation
tensor D can substitute the gradient of the velocity inside the
first integral of Eq. (4.26). Further, since D and H do not
depend on r ′, the relationship (4.26) can be written as

〈∇ · V 〉MG

μ
= D :

[
−K

∫
�

r ′ ⊗ r ′ ⊗ r ′

|r ′|3
∂W

∂s
dV ′

]

+H
...

[
−K

2

∫
�

r ′ ⊗ r ′ ⊗ r ′ ⊗ r ′

|r ′|3
∂W

∂s
dV ′

]
+O(h). (4.27)

The following two tensors can now be defined:

F = −K

∫
�

r ′ ⊗ r ′ ⊗ r ′

|r ′|3
∂W

∂s
dV ′,

(4.28)

G = −K

2

∫
�

r ′ ⊗ r ′ ⊗ r ′ ⊗ r ′

|r ′|3
∂W

∂s
dV ′.

Consequently, the i component of the smoothed viscous term
(4.20) admits the following compact representation:

〈∇ · V 〉MG
i = μ[FijkDjk + GijklHjkl] + O(h). (4.29)

With this form of the MGF its consistency can now be studied
by using the properties of the tensors F and G.
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2. Local consistency of the Monaghan and Gingold formulation
at the free surface

As expected, if the considered material point is inside the
domain, r ∈ �, from Eq. (4.29) one finds again the expression
(4.21) found by Español and Revenga [5]; see Appendix A
for details. Note that expression (4.21) is consistent with the
continuous viscous stress definition (2.5) only if λ = μ. This
means that the MGF does not satisfy the Stokes hypothesis
(λ = −2μ/3). The consequences of this fact have not received
much attention in the literature and are left for future studies.

If the considered material point now belongs to the free
surface, r ∈ ∂�F , the value of the components of the tensor
G are reduced due to the truncation of the kernel support;
see Appendix A. Furthermore, the tensor F is not null
anymore and becomes singular under certain circumstances,
diverging like h−1; see Appendix B. In this appendix it is
also shown that even when the fluid is truly incompressible,
such a singular behavior exists and it occurs when the normal
component of the viscous stress vector is not identically zero,
i.e., n · ∂u/∂n �≡ 0.

C. Morris et al. formulation

The second classical expression of the viscous term con-
sidered in the present work is the Morris et al. [9] formulation
(hereinafter MEAF). Its continuous expression reads

〈∇ · V 〉MEA(r)

= 2μ

∫
�

(r ′ − r) · ∇W (r ′ − r)

|r ′ − r|2
[
u(r ′) − u(r)

]
dV ′. (4.30)

Using the Taylor expansion (4.24) in the same way as for the
MGF leads to

〈∇ · V 〉MEA
i = μ[∇uijNj + HijkMjk] + O(h), (4.31)

where

Nj = −2
∫

�

r ′
j

s

∂W

∂s
dV ′, Mjk = −

∫
�

r ′
j r ′

k

s

∂W

∂s
dV ′.

(4.32)

Similarly to the MGF, N is zero inside the fluid domain while
it is equal to −C/hn at the free surface, where C is a constant
depending on the kernel function. The MEAF is thus also
locally inconsistent at the free surface, diverging linearly.

For what concerns the second-order terms, Mjk = δjk

inside the fluid while it halves at the free surface, independently
of the kernel shape. Then, inside the fluid domain the MEAF
is consistent as

lim
h→0

〈∇ · V 〉MEA = μ∇2u. (4.33)

This means that, inside the domain, the MEAF approximates
the exact viscous term for incompressible flows while the MGF
also takes into account the weak-compressibility effects, but
not respecting the Stokes hypothesis (cf. Sec. B2).

At this stage we have established that both MGF and
MEAF are consistent inside the domain. Conversely, due to
the incompleteness of the kernel support, these formulations
are, not surprisingly (cf. Sec. B), locally not consistent at the
free surface, and both diverge linearly. However, this does
not prejudge the global consistency of these formulations for
free-surface flows, as will be shown in next sections.

V. GLOBAL CONSISTENCY OF THE THREE VISCOUS
FORMULATIONS AT HAND

In the previous sections it has been shown that the different
SPH viscous term formulations are locally inconsistent at
the free surface. In the present section we investigate their
global consistency. This global consistency can be checked in
different ways. A possibility is to monitor the convergence of
the formulations toward reference solutions on viscous flow
test cases for typical flow quantity evolutions. In that sense the
consistency of SPH viscous formulations on typical internal
flows such as Couette, Poiseuille, lid-driven cavity flows, etc.,
has been widely studied in the literature. The same will be
performed in next section but for free-surface test cases.

Another possibility is to monitor the dissipation introduced
by the smoothed viscous terms. This dissipation is quantified
by the following integral:∫

�

〈∇ · V 〉 · u dV. (5.34)

From Eq. (4.17) it follows that any formulation of the viscous
term verifying the principle of virtual works, as the PVWF,
will introduce the correct viscous dissipation during the flow
evolution. From a theoretical point of view, the expression
(5.34) can be integrated by parts to give a boundary term which
is associated to the power of the surface forces and a bulk term
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FIG. 2. (Color online) Configuration (left)
and SPH setup and initial pressure for the test
case in Sec. VI A.
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FIG. 3. (Color online) Evolution of a circular patch of fluid with a nonuniform initial vorticity distribution. Left: initial angular velocity
ω. Right: angular velocity ω at time t = 100 s predicted by the SPH simulation using the MGF. The contour levels are representative of the
intensity of the vorticity field.

which, for the second principle of thermodynamics, is never
negative and therefore causes the loss of kinetic energy of the
fluid body.

If one considers a free-surface flow with no other boundary
the following expressions can be derived (see Appendix C):∫

�

〈∇ · V 〉MG · u dV = −
∫

�

V :DdV + O(h), (5.35)

∫
�

〈∇ · V 〉MEA · u dV = −μ

∫
�

‖∇u‖2 dV + O(h).

(5.36)

From this result we can draw different interesting conclusions.
First, both the integrals for the MGF and the MEAF are
convergent, despite the local singularity of these formulations
at the free surface. Second, as shown by Eq. (5.36), the
dissipation associated to the MEAF is different from zero even
in the case of a pure rigid rotation (that is, D ≡ 0) where there
should be no dissipation at all. Last, by choosing u as virtual
displacement field into Eq. (5.35) it follows that the MGF
satisfies the principle of virtual works (4.17) with an error of
order O(h).

Summarizing, despite their local inconsistency at the free
surface, PVWF and MGF are theoretically globally consistent
for free-surface flow. Conversely, the MEAF is globally
convergent but not to the proper viscous dissipation and is
likely to be discarded for free-surface flow.

VI. TEST CASES

In the present section we show to what extent the theoretical
conclusions drawn in the previous sections with respect to
the continuous smoothed viscous term remain valid after
discretization. To this purpose three free-surface flow test
cases were selected. The numerical parameters used in these
simulations are (i) use of a renormalized Gaussian kernel, see,
e.g., [15], with 3h kernel support radius, (ii) h/�x = 4/3,

with �x the mean particle interspace. In the simulations of
this section the three formulations discussed in the paper
are compared: (i) PVWF, Eq. (4.19), (ii) MGF, Eq. (4.20),
and (iii) MEAF, Eq. (4.30). For each test case the results
obtained through the different viscous models are compared
with analytical or reference solutions.

A. Evolution of a circular patch of fluid with a nonuniform
initial vorticity distribution

A fluid circular cylinder of radius R = 1 subjected to a
radial force field is considered (Fig. 2). The origin of the
frame of reference is the cylinder center and the radial force
is g = −β2 r r̂ where β is a constant parameter, r is the
radial coordinate, and r̂ is the radial unit vector. The angular
coordinate is denoted by θ while θ̂ indicates the tangential unit
vector. The subscripts r and θ are used to denote, respectively,
the radial and angular components of the velocity field.

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

t = 0.0

t = 60 s

t = 20 s

t = 10 s

r/R

uθ / ω0R

SPH solution (R/Δx=200)

Analytical Solution

FIG. 4. (Color online) Evolution of a circular patch of fluid with
a nonuniform initial vorticity distribution. Comparison between the
velocity component uθ predicted by the SPH simulation using the
MGF (solid line), and the analytical solution (dashed line) at different
times.
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An incompressible isotropic solution is sought. Under these
hypotheses the Navier-Stokes equations reduce to{

− u2
θ

r
=− 1

ρ0

∂p

∂r
− β2 r,

∂uθ

∂t
= ν

{
1
r

∂
∂r

(
r ∂uθ

∂r

) − uθ

r2

}
.

(6.37)

Since ω(r,t) = uθ (r,t)/r , the second equation can be rear-
ranged in the following format:

∂ω

∂t
= ν

r

{
3

∂ω

∂r
+ r

∂2ω

∂r2

}
. (6.38)

The initial distribution for the angular velocity field is chosen
as

ω(r,0) = ω0

{
l2

l2 + r2
+ 2

l2 R

( l2 + R2 )2
r

}
, (6.39)

and does not depend on θ accordingly to the initial hypotheses.
The constant parameters are �2 = 0.1 m2, ω0 = 1 rad/s, and
β = π/8 s−1. The kinematic viscosity ν is equal to 10−3 m2/s
and the Reynolds number is Re = R uθ (R,0)/ν = 256. With
these values the velocity field actually remains independent of
θ during the simulation.

In this configuration condition (2.8) is equivalent to
∂ω/∂r = 0 at the boundary. Initial condition (6.39) actually
satisfies this equality. Note that Eq. (6.38) is not coupled with
the pressure equation and can therefore be solved numerically
to get a reference solution for ω(r,t), hereinafter referred to as
“analytical solution.” Since there is no dependence on θ , the
symmetric part D and antisymmetric part W of the velocity
gradient in polar coordinate are

D = 1

2

(
0 r ∂ω/∂r

r ∂ω/∂r 0

)
,

(6.40)

W = 1

2

(
0 −(2 ω + r ∂ω/∂r)

2 ω + r ∂ω/∂r 0

)
.

Since the domain always keeps circular, it is simple to
prove that n · D · n = 0. This implies that the viscosity
smooth operator 〈∇ · V 〉MG is locally consistent also at the
free surface in this situation, according to the results of
Sec. IV B 2.

The initial setup of the SPH simulation is displayed in
the right panel of Fig. 2. The left panel of Fig. 3 shows
the initial angular velocity field and the related contour
plot for the vorticity curl(u) = ω + 1

2 r ∂ω/∂r . Due to the
viscous effects, for t → ∞ the flow evolution theoretically
converges to a rigid rotation with a constant angular velocity
equal to ω � 0.2848 ω0. The right panel of Fig. 3 shows
the angular velocity field predicted by the SPH simulation
at time t = 100 s using the MGF. As can be seen in the
right panel of Fig. 2, at the end of the simulation the initial
nonuniform angular velocity field has been almost flattened by
the viscosity action. The comparison between the analytical
solution for uθ (dashed lines) and the MGF SPH one (solid
lines) at different times is presented in Fig. 4. A very close
agreement is found and a linear profile is obtained for long
times, which indicates that the motion has become a rigid
rotation.

When using the PVWF the same results are found as
when using the MGF. Conversely, the MEAF SPH simulation
quickly diverges from the analytical solution.

Using Eq. (6.40) it is possible to evaluate the kinetic energy
dissipation through

d Ek

dt
= − 2 μ

∫
�

D : D dV = −μ

∫
�

(r ∂ω/∂r)2 dV.

(6.41)

The left panel of Fig. 5 shows the evolution of dEk/dt

evaluated with the analytical solution and through the SPH
solver. In the latter case the three different formulations
〈∇ · V 〉PVW, 〈∇ · V 〉MG, 〈∇ · V 〉MEA were used. All the SPH
simulations were performed with the same spatial resolution,
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FIG. 5. (Color online) Evolution of a circular patch of fluid with a nonuniform initial vorticity distribution. Left: time histories of the
kinetic energy dissipation dEk/dt evaluated using 〈∇ · V 〉PV W , 〈∇ · V 〉MG, 〈∇ · V 〉MEA. The dashed-dotted line represents the analytical
solution. Right: relative error on the kinetic energy evolution between the analytical solution and SPH solutions for 〈∇ · V 〉PVW and
〈∇ · V 〉MG.
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FIG. 6. (Color online) Stretching of a square patch of viscous fluid. Left: free surface configuration at time t = 0 and tA0 = 1. Right:
enlarged view of the y-component of the vector 〈∇ · V 〉MG evaluated along the symmetry axis AA’ at initial time t = 0 for decreasing smoothing
lengths h.

that is R/�x = 100. The first two formulations are in very
good agreement with the analytical solution, but for high
frequency oscillations related to the weak-compressibility
assumption. Conversely, when the MEAF is used the kinetic
energy dissipation is much higher. This result confirms the va-
lidity of the theoretical analysis made in the previous sections,
also at the discrete level. In particular, the contribution ofW :W
in Eq. (5.36) leads to an unphysical increase of the viscous
dissipation for this MEA formulation. The right panel of Fig. 5
shows the time history of the relative error on the kinetic energy
Ek for the PVWF and MGF simulations. It confirms again that
the preceding theoretical findings hold at the discrete level: the
PVWF is actually more accurate than the MGF.

In the next subsection we show that even for a prob-
lem where the rate strain tensor D is predominant with
respect to the tensor W , i.e., the vorticity field is weak,
the MEAF still provides unphysical values of the viscous
dissipation.

B. Stretching of a square patch of viscous fluid

As a second test case we consider a square fluid domain �

with side length L, subjected at t = 0 to the velocity field:

{
u0(x,y) = A0x

v0(x,y) = −A0y
⇒ D0 =

(
A0 0
0 −A0

)
, W0 = 0.

(6.42)

The square center is considered the origin of the frame of
reference. Since no external force is considered, the velocity
field u0 tends to stretch the domain � along the x axis and to
contract it in the y direction; see the left plot of Fig. 6. The
initial velocity field satisfies the boundary condition τ · D0 ·
n = 0. The initial pressure field is evaluated by solving the
Poisson equation for incompressible flow ∇2 p = −2 ρ A2

0 ;
see, e.g., [16]. The pressure boundary condition along the
free surface is p = −2 μ (n · D0 · n) and the Reynolds number
is Re = L2 A0/ν = 20. Due to this rather strong viscosity
about 80% of the initial kinetic energy is dissipated in the
interval tA0 = [0,1]. Since n · D · n is not null we expect
the viscous smoothing operators 〈∇ · V 〉 to be singular at the
free surface. This is shown at initial time in the right panel
of Fig. 6 and in Fig. 7, showing a linear divergence for all
the three formulations. One can note that, conversely to the
MGF and MEAF, the PVWF solutions present both negative
and positive values near the free surface. This is likely due
to the fact that this operator satisfies the integral equation
(4.17). Unfortunately, this behavior induces large numerical
instabilities in time, which leads to unphysical clumping of
the particles close to the free surface. Due to these instabilities
the operator 〈∇ · V 〉PVW can be only used for limited time
intervals.

For this test case no analytic solution can be derived and
the SPH solutions are compared to a standard commercial
volume of Fluid Finite volume solver (STAR-CCM+ here).
In this reference solution the space resolution considered is
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FIG. 7. (Color online) Stretching of a square patch of viscous fluid. Enlarged views of the y component of the vectors 〈∇ · V 〉PVW (left)
and 〈∇ · V 〉MEA (right) evaluated along the symmetry axis AA′ at initial time t = 0 for decreasing smoothing lengths h.
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FIG. 8. (Color online) Stretching of a square patch of viscous fluid. Left: time histories of the kinetic energy dissipation dEk/dt for the
three formulations. The dashed-dotted line represents the solution obtained through a finite-difference scheme solver. Right: relative error
between the kinetic energy evaluated with the SPH MGF formulation and the one obtained by the FDM solver.

L/�x = 320. The left panel of Fig. 8 shows the time history
of the kinetic energy dissipation. The kinetic energy dissipation
at initial time t = 0 is equal to dEk/dt = −4 μA2

0 L3. This
value is very accurately obtained when 〈∇ · V 〉PV W is used,
with a relative error of 0.04%, against about 5% when the
MGF is adopted. When using the MEA operator this initial
value of dEk/dt is halved, as theoretically predicted by
Eq. (5.36). Further during the evolution the MGF remains
in good agreement with the FDM reference, whereas the
PVWF performs well only up to t = 0.1A0 before numerical
instabilities develop up to stopping the simulation. In the right
panel of the same figure is plotted the relative error between
the MGF solution at different space resolutions and the FDM
reference using the finest resolution (L/�x = 320). A linear
convergence is observed for the MGF SPH simulation and the
relative error with the FDM for L/�x = 320 is about 0.55%.

C. Standing Wave

As a last test case we investigate the widely studied
standing wave problem. In this problem a periodic standing
wave of wavelength λ and wave amplitude A is considered.
The numerical domain chosen to study this problem is a
domain of width L = λ/2 with symmetry conditions applied
on its vertical boundaries. The considered water filling height
is H = L. The wave number is k = 2π/λ and the wave
steepness is ε = 2A/λ.

For small-amplitude waves, i.e., ε < 0.01, in an inviscid
context the potential theory predicts the following approximate
solution:

ϕ(x,y,t) = ϕ0(x,y) cos(ω t),
(6.43)

ϕ0(x,y) = −Ag

ω

cosh[k(y + H )]

cosh(kH )
cos(k x).

The angular frequency ω is given by the dispersion relation
for gravity waves ω2 = g k tanh(k H ), with g the gravity

acceleration. A sketch of the problem is displayed in top left
panel of Fig. 9. At time t = 0 the free surface is horizontal
and the time derivative of the velocity potential is zero in the
whole fluid domain. As a consequence the pressure field at this
time can be simply assumed to be hydrostatic with an error of
O(ε2) while the initial fluid velocity is given by ∇ϕ0.

The potential theory predicts that the total energy of the
standing wave is conserved in time. If the fluid is viscous, as it
is considered here, it is still possible to obtain an approximate
analytical solution, see Lighthill [17], which gives as decay of
the kinetic energy:

Ekin(t) = λ A2 g

8
e−4 ν k2 t [1 + cos(2 ω t)]. (6.44)

In Fig. 9 the decay of the kinetic energy in time is plotted for the
different SPH formulations of the viscous term. The Reynolds
number is Re = λ Umax/ν = 140 where Umax is the maximum
fluid velocity obtained from Eq. (6.43). All the SPH viscous
formulations exhibit a linear convergence, and a converged
solution is obtained for the finest resolution H/�x = 240. The
PVWF gives the best agreement with the analytical solution
(6.44) while the MGF presents a small (and almost negligible)
underprediction of the damping rate. On the contrary, as for
the other test cases the MEAF fails in predicting the proper
kinetic energy dissipation of this free-surface problem. These
conclusions further confirm that the theoretical findings of the
present work hold after discretization.

VII. CONCLUSIONS

In the present paper we followed the analysis made in [7]
for inviscid free-surface flow but for a viscous flow here. Since
at continuous level the lack of full support of the SPH kernel
raises a consistency issue at the free surface, first studied was
the local consistency of the viscous second-order differential
operator at the free surface. This local consistency depends
on the quantity to which the operator applies, with a link
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FIG. 9. (Color online) Standing wave:
sketch of the problem (top left) and the decay
of the kinetic energy as predicted by using
the PVWF (top right), the MGF (bottom left),
and the MEAF (bottom right).

to the boundary condition considered. The conclusions of
this analysis, for instance for the Monaghan and Gingold
formulation [8], are that this second-order operator is not
divergent at the free surface in its tangential component, and
divergent of order 1 in its normal component.

It was then shown that this local inconsistency does not
prejudge the global consistency since the latter is also linked to
the compatibility between the different equations of the system
(global energy conservation), which implies the verification of
the boundary conditions in an integral sense. In practice, one
is more interested in this global consistency than the local
one. The conclusions drawn from this analysis at continuous
level in the present paper are that the classical Monaghan and
Gingold formulation of the viscous term can be used in the
context of viscous free-surface flow, whereas it is not the case
for the other classical formulation by Morris et al. [9].

When proceeding to the analysis of the compatibility of the
system of equations, here achieved thanks to the principle of
virtual works, it is also possible to derive new formulations
which intrinsically verify the compatibility. This led us to
propose a new formulation of the viscous term, referred to as
PVW formulation. Both the Monaghan and Gingold and the
PVW formulations permit us to verify implicitly the dynamic
free-surface boundary condition in a weak sense.

Finally, the main question raised by such an analysis at
continuous level for SPH practitioners is the applicability
of its conclusions to numerical simulations of such viscous
free-surface flows, i.e., after discretization. This question is
even more critical if one recalls that discrete SPH first-order
differential operators are divergent even inside the domain

for an irregular distribution of the particles (see, e.g., [15]).
To the purpose of answering this practical question different
numerical test cases were performed in the last part of the
paper, including the classical standing-wave case. These test
cases permit us to show that all the theoretical findings derived
at a continuous level hold after discretization.
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APPENDIX A: EVALUATION OF G IN THREE
DIMENSIONS

Let us consider a material point which is in the interior
of the fluid domain �. Using a spherical coordinate system
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centered at the particle position r we get∫
�

W (r ′ − r)dV =
∫ 2π

0
dθ

∫ π

0
dφ

∫ ∞

0
W (s)s2sin(φ)ds = 1,

(A1)

since the kernel integral is equal to 1 by definition. It follows
that ∫ ∞

0
s2W (s)ds = 1

4π
. (A2)

Taking into account relation (4.22) and integrating by parts
Eq. (A2) comes ∫ ∞

0
s3 ∂W

∂s
ds = − 3

4π
. (A3)

Using equalities (A2) and (A3), the tensorG defined in Sec. IV
becomes

G= − K

2

∫ π

0
dφ

∫ 2π

0
dθ

∫ ∞

0
(r̂ ′ ⊗ r̂ ′ ⊗ r̂ ′ ⊗ r̂ ′)s3 ∂W

∂s
sin(φ)ds,

(A4)

where s is the distance |r ′| and r̂ ′ is the unit vector
[cos θ sin φ, sin θ sin φ, cos φ]. Using relation (A3), expres-
sion (A4) can be rewritten as

G = K
3

8π

∫ π

0
dφ

∫ 2π

0
dθ (r̂ ′ ⊗ r̂ ′ ⊗ r̂ ′ ⊗ r̂ ′) sin(φ). (A5)

This result shows that the tensor G does not depend on the
kernel function. Further, this tensor is symmetric and only
21 components are different from zero (K = 10 in three
dimensions):

G[1,1,1,1] = G[2,2,2,2] = G[3,3,3,3] = 3,

G[1,1,2,2] = G[1,1,3,3] = G[2,2,1,1] = G[2,2,3,3] = G[3,3,1,1] = G[3,3,2,2] = 1,

G[1,2,1,2] = G[1,2,2,1] = G[1,3,1,3] = G[1,3,3,1] = G[2,3,2,3] = G[2,3,3,2] = 1,

G[2,1,1,2] = G[2,1,2,1] = G[3,1,1,3] = G[3,1,3,1] = G[3,2,2,3] = G[3,2,3,2] = 1.

Using the above results and some algebra G can be rewritten
as J + A where (see, e.g., [18])

Jijkl = δij δkl and Aijkl = ∂2(r i rj )

∂ rk∂ r l

. (A6)

Consequently, when the fourth-order tensor G is applied to the
third-order Hessian tensor H defined in Sec. IV, one obtains

GijklHjkl =
[
JijklHjkl + ∂2(r i rj )

∂ rk∂ r l

Hjkl

]
. (A7)

For a point which is still in the interior of the fluid domain F
is equal to zero, as demonstrated in Appendix B. Consequently
the smoothed viscous term (4.29) becomes

〈∇ · V 〉MG
i = μGijklHjkl + O(h)

= μ

[
JijklHjkl + ∂2(r i rj )

∂ rk∂ r l

Hjkl

]
+ O(h), (A8)

where

[∇2u|r ]i =JijklHjkl and [∇(∇ · u)|r ]i = 1

2

∂2(r i rj )

∂ rk∂ r l

Hjkl .

(A9)

It follows that

lim
h→0

〈∇ · V 〉MG = μ∇2u(r) + 2μ∇(∇ · u)(r). (A10)

Finally, due to the symmetry properties of the tensor G, the
smoothed viscous tensor can be written as

〈V 〉MG
ij = μGijklDkl + O(h), (A11)

and μG can be seen as the elasticity tensor used in the linear
elasticity theory (e.g., see [19]).

If the material point is now on the free surface, that is, r ∈
∂�F , and if this surface is regular, ∂�F can be approximated
by its tangent plane in r . As a consequence, integral (A5)
has to be evaluated on the half space corresponding to the
fluid region and the range of the zenith angle φ changes into
[π/2,π ]. Then, we get

G = K
3

8π

∫ π

π/2
dφ

∫ 2π

0
dθ (r̂ ′ ⊗ r̂ ′ ⊗ r̂ ′ ⊗ r̂ ′) sin(φ),

(A12)

and all the components of the tensor G are halved.

APPENDIX B: SMOOTHED VISCOUS TERM
SINGULARITY

If one approximates a general velocity field to its linear
component, expression (4.29) of the smoothed viscous term
(4.20) reduces to

〈∇ · V 〉i = μFijkDjk. (B1)

Let us now assume as in Appendix A that r is a point of the free
surface (r ∈ ∂�F ) and that this surface is regular. Again, the
free surface can be approximated by its tangent plane in r in
that case of normal unit vector n pointing outside the fluid and
of tangential unit vector τ . The tensor F can then be evaluated
by assuming a local frame of reference such that n = e3 and by
using a spherical coordinate system. Under these assumptions,
integral (4.28) takes the following form:

F = −K

[ ∫ π

π/2
dφ

∫ 2π

0
dθ [r̂ ′ ⊗ r̂ ′ ⊗ r̂ ′] sin(φ)

]

×
[ ∫ ∞

0
s2 ∂W

∂s
ds

]
, (B2)
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in which s is the distance |r ′|, and r̂ ′ the unit vector
[cos θ sin φ, sin θ sin φ, cos φ]. Since the spherical support of
the kernel is halved by the free-surface plane, the tensor F is
not identically null. Actually, its components read⎧⎪⎪⎪⎨

⎪⎪⎪⎩
F · e1 = C

h
(e1 ⊗ e3 + e3 ⊗ e1),

F · e2 = C
h

(e2 ⊗ e3 + e3 ⊗ e2),

F · e3 = C
h

(e1 ⊗ e1 + e2 ⊗ e2 + 2e3 ⊗ e3),

(B3)

where constant C is not null and depends on the choice of the
kernel function W . For example, if W is the Gaussian kernel
C = K/(4

√
π) in three dimensions and C = K/(3

√
π ) in two

dimensions. The components of the tensorF given by the array
of Eqs. (B3) can be rewritten in a more meaningful form as⎧⎪⎪⎨

⎪⎪⎩
F · τ = C

h
(τ ⊗ n + n ⊗ τ ),

F · n = C

h
(1 + n ⊗ n).

(B4)

As a consequence, the smoothed viscous term (B1) normal
and tangential components are

〈∇ · V 〉 · τ = μ2C

h
τ · D · n , (B5)

〈∇ · V 〉 · n = μC

h
[tr(D) + n · D · n]. (B6)

The tangential stress boundary condition (2.8) for an in-
compressible Newtonian fluid, namely τ · D · n = 0, can be

applied to equality (B5). It implies the vanishing of the
tangential component of the smoothed viscous term:

〈∇ · V 〉 · τ = 0. (B7)

Regarding the normal component (B6), the incompressibility
assumption (trD = 0) implies that

〈∇ · V 〉 · n = μC

h
n · D · n. (B8)

Since C �= 0 this normal component of the smoothed stress
tensor vanishes if and only if n · D · n = 0. Consequently,
when n · D · n �= 0 at the free surface, the normal component
of the smoothed stress tensor 〈∇ · V 〉 diverges like O(1/h).

APPENDIX C: DERIVATION OF THE DISSIPATION
INTEGRAL EXPRESSIONS FOR THE MGF AND MEAF

In the present appendix we study the dissipation integral
expression: ∫

�

〈∇ · V 〉 · u dV, (C1)

where 〈∇ · V 〉 is given by the MGF or the MEAF.
Let us assume the fluid has a free surface and no solid

boundaries. Using the MGF Eq. (C1) becomes

μK

∫
�

dV

∫
�

(u′ − u) · (r ′ − r)

|r ′ − r|3 u · (r ′ − r)
∂W

∂s
dV ′.

(C2)

Writing u = (u − u′)/2 + (u + u′)/2 we decompose Eq. (C2)
as follows:

−μK

∫
�

dV

∫
�

[(u′ − u) · (r ′ − r)]2

|r ′ − r|3
∂W

∂s
dV ′ + μK

∫
�

dV

∫
�

(u′ − u) · (r ′ − r)

|r ′ − r|3 (u′ + u) · (r ′ − r)
∂W

∂s
dV ′. (C3)

The kernel inside the second double integral is antisymmetric and, as a consequence of the double integration, gives a contribution
which is identically null. Note that such a reasoning holds true only in absence of solid boundaries and/or interfaces with other
fluids. Otherwise, the boundary influence should be added to the computations above invalidating the symmetry properties of the
double integrals. With respect to the first double integral one can note that

(u′ − u) · (r ′ − r) =
[
∂ui

∂rj

∣∣∣
r
(r ′

j − rj ) + O(|r ′ − r|2)

]
(r ′

i − ri) = (r ′
i − ri)Dij (r ′

j − rj ) + O(|r ′ − r|3),

leading to

μK

2

∫
�

DijDkldV

∫
�

(r ′
i − ri)(r ′

j − rj )(r ′
k − rk)(r ′

l − rl)

|r ′ − r|3
∂W

∂s
dV ′ + O(h)

= μ

∫
�

DijDklGijkldV + O(h) = −μ

∫
�

(trD)2dV − 2μ

∫
�

D :DdV + O(h);

that is ∫
�

u · 〈∇ · V 〉MGdV = −μ

∫
�

(trD)2dV − 2μ

∫
�

D :DdV + O(h). (C4)

Using the MEAF and following the same procedure one obtains∫
�

u · 〈∇ · V 〉MEAdV = μ

∫
�

dV

∫
�

|u′ − u|2
|r ′ − r|

∂W

∂s
dV ′ = μ

∫
�

(
∂ui

∂rj

) (
∂ui

∂rk

)
MjkdV + O(h) = −μ

∫
�

‖∇u‖2dV +O(h).

(C5)
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