
Mauro Oddo
Joshua M. Levine
Monisha Kumar
Katia Iglesias
Suzanne Frangos
Eileen Maloney-Wilensky
Peter D. Le Roux

Anemia and brain oxygen after severe
traumatic brain injury

Received: 28 September 2011
Accepted: 23 April 2012
Published online: 15 May 2012
� Copyright jointly held by Springer and
ESICM 2012

M. Oddo � J. M. Levine � M. Kumar �
S. Frangos � E. Maloney-Wilensky �
P. D. Le Roux
Department of Neurosurgery,
Perelman School of Medicine
at the University of Pennsylvania,
Philadelphia, PA 19104, USA

J. M. Levine � M. Kumar
Department of Neurology,
Perelman School of Medicine
at the University of Pennsylvania,
Philadelphia, PA 19104, USA

J. M. Levine � M. Kumar
Department of Anesthesiology and Critical
Care, Perelman School of Medicine
at the University of Pennsylvania,
Philadelphia, PA 19104, USA

M. Oddo ())
Department of Intensive Care Medicine,
Centre Hospitalier Universitaire Vaudois
(CHUV), Rue du Bugnon 46,
1011 Lausanne, Switzerland
e-mail: mauro.oddo@chuv.ch
Tel.: ?41-79-5561246

K. Iglesias
Faculty of Biology and Medicine,
Institute of Social and Preventive Medicine,
Centre Hospitalier Universitaire Vaudois
(CHUV), Lausanne University Hospital,
1011 Lausanne, Switzerland

Abstract Purpose: To investigate
the relationship between hemoglobin
(Hgb) and brain tissue oxygen tension
(PbtO2) after severe traumatic brain
injury (TBI) and to examine its
impact on outcome. Methods: This
was a retrospective analysis of a
prospective cohort of severe TBI
patients whose PbtO2 was monitored.
The relationship between Hgb—cat-
egorized into four quartiles (B9;
9–10; 10.1–11;[11 g/dl)—and PbtO2

was analyzed using mixed-effects
models. Anemia with compromised
PbtO2 was defined as episodes of
Hgb B 9 g/dl with simultaneous
PbtO2 \ 20 mmHg. Outcome was
assessed at 30 days using the Glas-
gow outcome score (GOS),
dichotomized as favorable (GOS 4–5)
vs. unfavorable (GOS 1–3). Results:
We analyzed 474 simultaneous Hgb
and PbtO2 samples from 80 patients
(mean age 44 ± 20 years, median
GCS 4 (3–7)). Using Hgb [ 11 g/dl
as the reference level, and controlling

for important physiologic covariates
(CPP, PaO2, PaCO2), Hgb B 9 g/dl
was the only Hgb level that was
associated with lower PbtO2 (coeffi-
cient -6.53 (95 % CI -9.13; -3.94),
p \ 0.001). Anemia with simulta-
neous PbtO2 \ 20 mmHg, but not
anemia alone, increased the risk of
unfavorable outcome (odds ratio 6.24
(95 % CI 1.61; 24.22), p = 0.008),
controlling for age, GCS, Marshall
CT grade, and APACHE II score.
Conclusions: In this cohort of
severe TBI patients whose PbtO2 was
monitored, a Hgb level no greater
than 9 g/dl was associated with
compromised PbtO2. Anemia with
simultaneous compromised PbtO2,
but not anemia alone, was a risk
factor for unfavorable outcome, irre-
spective of injury severity.
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Introduction

Anemia is frequent after traumatic brain injury (TBI),
occurring in up to 50 % of patients [1, 2]. Normally,
dilation of cerebral arterioles augments cerebral blood
flow (CBF) and preserves oxygen delivery in the setting
of decreased oxygen content associated with anemia [3],
therefore symptoms of anemia-induced brain dysfunc-
tion become manifest only when hemoglobin (Hgb) is
less than 7 g/dl [4, 5]. In conditions of impaired cere-
bral autoregulation, such as occurs after TBI, compen-
satory mechanisms may be insufficient to maintain
adequate CBF and anemia-induced brain injury may
occur at higher Hgb thresholds, e.g., \9–10 g/dl [6]. In
animal models of TBI, anemia reduces cerebral oxy-
genation [4, 7] and aggravates secondary brain injury
[7–9]. Anemia also may worsen outcome [10, 11],
although the relationship between anemia and TBI
prognosis is still controversial [12]. Furthermore, cor-
rection of anemia with red blood cell transfusion,
particularly when using Hgb targets greater than 10 g/dl,
may in turn be associated with increased morbidity
[13–15]. Guidelines recommend that anemia should not
be the only factor used to decide whether to administer
transfusions [16]; however, there are no established
physiological markers to guide decision-making in TBI
patients with anemia.

In animals, brain tissue oxygen tension (PbtO2) is a
good marker of anemia-induced brain injury [4, 7] and
correction of anemia with transfusion [17] is associated
with PbtO2 increase and attenuation of compromised
PbtO2 and injury. Monitoring of PbtO2 is an established
tool to measure cerebral oxygenation in brain-injured
patients [18] and is increasingly used in neurocritical care
[19]. Cerebral perfusion pressure (CPP) and CBF are
important physiologic determinants of PbtO2 [20, 21].
Other factors include PaO2 and PaCO2 [22]. Low PbtO2 is
associated with poor outcome after TBI [23–25]. PbtO2

might thus provide information about the physiological
impact of anemia after severe TBI.

The objective of this study was to investigate the
relationship between hemoglobin and PbtO2 in patients
with severe TBI and to examine its impact on outcome.

Materials and methods

Patients

Subjects were part of a prospective database (the brain
oxygen monitoring outcome (BOMO) study) that
describes patients with severe TBI treated in the neuro-
intensive care unit at the Hospital of the University of
Pennsylvania, Philadelphia [23]. Approval for the study
was obtained from the institutional review board. Patients

included in this study had (1) non-penetrating TBI and (2)
both PbtO2 and intracranial pressure (ICP) monitoring.
Patients were excluded who (1) had fixed and dilated
pupils at admission, (2) had less than 24 h of intracranial
monitoring, (3) had PbtO2 = 0 mmHg for longer than
3 h, (4) were declared brain dead within 48 h of initiation
of monitoring. For the purpose of this study only patients
who had at least 24 h of valid PbtO2 and Hgb sampling
were analyzed.

Intracranial monitoring

Intracranial pressure (Camino�, Integra Neurosciences,
Plainsboro, NJ) and PbtO2 (Licox�, Integra Neurosci-
ences) were monitored as part of standard patient care
[23, 26]. Monitors were inserted at the bedside into the
frontal lobe and secured with a triple-lumen bolt. In all
patients, monitors were placed into white matter that
appeared normal on the admission head CT. When there
was no asymmetry in brain pathology on CT, the probes
were placed in the right frontal region. If the patient had
undergone a craniotomy, the probes were placed on the
same side as the injury if the craniotomy flap permitted.
Non-contrast head CT scan was performed in all patients
within 24 h of admission to confirm correct placement of
the various monitors, e.g., not in a contusion or infarct.
Probe function was confirmed by an oxygen challenge
(FiO2 1.0 for 2 min). To allow for probe equilibration,
data from the first 3 h after ICP and PbtO2 monitor
insertion were discarded. Each patient also had an arterial
catheter for mean arterial pressure (MAP) recording and
calculation of CPP (MAP-ICP).

General clinical management

All patients were managed according to a protocol based
on published recommendations for severe TBI care [27].
This included early evacuation of traumatic hematomas,
pressure-limited ventilation to maintain PaCO2 between
30 and 40 mmHg and SaO2 [ 93 %, sedation using
propofol during the first 24 h followed by sedation
and analgesia using lorazepam, morphine, or fentanyl,
bed rest with head elevation initially of at least 30�,
euvolemia using 0.9 % normal saline, and anticonvul-
sant prophylaxis with phenytoin for 1 week. Goals of
therapy included maintaining ICP \ 20 mmHg and
CPP [ 60 mmHg.

Elevated ICP ([20 mmHg for longer than 2 min) was
initially treated with head of bed elevation, sedation, and
analgesia. If ICP remained greater than 20 mmHg for
longer than 10 min despite these measures, osmotherapy
was administered with mannitol (0.5–1 g/kg, 25 % solu-
tion). Thereafter, cerebrospinal fluid was drained using
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an external ventricular drain particularly if there was
hydrocephalus. Second-tier therapies for refractory intra-
cranial hypertension included optimized hyperventilation
(PaCO2 30–35 mmHg), decompressive craniectomy, or
pharmacological coma (with propofol or pentobarbital).

Management of brain oxygen

Patients received ‘‘cause-directed therapy’’ to maintain
PbtO2 C 20 mmHg according to our local protocol and as
previously described [23, 26]. When PbtO2 was low in the
setting of ICP [ 20 mmHg, measures were taken to lower
ICP as described above. If ICP \ 20 mmHg or lowering
ICP failed to raise PbtO2 then CPP was increased with
phenylephrine. If the cause of low PbtO2 was systemic
hypoxemia then pulmonary function was optimized (by
increasing FiO2 and/or positive end-expiratory pressure).
If excess metabolic demand was suspected (e.g., pain,
agitation, fever, or seizures) then analgesic, sedative, or
antiepileptic medications were administered. If these
measures failed and hemoglobin was less than 10 g/dl a
blood transfusion was administered.

Blood transfusion

Hemoglobin concentration was measured at least twice
per day and the decision to transfuse blood was based on
the discretion of the clinician in charge and the patient’s
clinical status when Hgb was 7–10 g/dl. Blood transfu-
sion was given if hemoglobin was less than 7 g/dl. Blood
gas concentrations (including PaO2 and PaCO2) were
measured simultaneously with Hgb concentration.

Outcome assessment

A neurointensivist and a neurocritical nurse indepen-
dently assessed short-term outcome at 30 days using the
Glasgow outcome score (GOS), dichotomized as favor-
able (GOS 4 = moderate disability or 5 = good
recovery) or unfavorable (GOS 1 = death, 2 = vegeta-
tive state, and 3 = severe disability requiring long-term
rehabilitation).

Data collection and processing

Clinical and radiological variables included age, admis-
sion Glasgow coma scale (GCS), APACHE II score, and
Marshall CT grade [28, 29]. Marshall CT grade was
determined by consensus of a neurointensivist, a neuro-
radiologist, and a non-ICU neurologist who were blinded
to patient outcome. Data were retrieved electronically via
the computerized clinical information system. PbtO2, ICP,

and CPP were monitored continuously at the bedside
(component monitoring system M1046-9090C, Hewlett
Packard, Andover, MA) and also were recorded usually
every 15 min and at least every 30 min in ICU records.
For PbtO2 data, artifacts (e.g., periods related to discon-
nection of monitoring devices, 1.0 FiO2 during respiratory
therapy), and data points outside of physiological ranges
were manually excluded. For each patient, every consec-
utive hemoglobin sample was matched to simultaneous
pressure data: matching was performed by calculating the
mean value for PbtO2, ICP, and CPP recorded over the 3 h
preceding the Hgb sampling. Levels of Hgb were cate-
gorized into four separate quartiles:[11, 10.1–11, 9.1–10,
and B9 g/dl. Anemia was defined as the presence of at
least one episode of Hgb B 9 g/dl, according to current
transfusion practices and Hgb targets for transfusion in
neurocritical care [1, 11, 30–32]. Compromised brain
oxygen was defined as the presence of at least one episode
of PbtO2 \ 20 mmHg for at least 15 min, according to our
threshold for therapeutic intervention and the actual defi-
nition of moderate brain hypoxia [33] or compromised
brain oxygen [34]. Anemia with compromised PbtO2 was
defined as the simultaneous occurrence of episodes with
Hgb B 9 g/dl and PbtO2 \ 20 mmHg.

Statistical analysis

Longitudinal data analysis was performed to account for
repeated measures of physiological variables across dif-
ferent patients over time. Repeated measures of Hgb and
of PbtO2 were analyzed using a mixed-effects multilevel
regression model, with mean PbtO2 values nested into the
patients and Hgb levels (categorized into four quartiles:
B9, 9.1–10, 10.1–11, [11 g/dl, using [11 g/dl as the
level of reference), CPP, PaO2, PaCO2, age, Marshall CT
grade, admission GCS, APACHE II score (without GCS)
as covariates. To examine the risk factors for unfavorable
outcome at 30 days a logistic regression was used with
age, Marshall CT grade, admission GCS, APACHE II
score (without GCS), anemia, compromised PbtO2, and
anemia with simultaneous compromised PbtO2. Data
analysis was performed using STATA 12.0 (College
station, Texas, 77845, USA). Significance was defined as
p B 0.05.

Results

Patient characteristics

Eighty patients hospitalized over a 4-year period were
studied (Table 1). Thirty-one patients managed during the
same time period were excluded because of penetrating
TBI (n = 10), ICP and PbtO2 monitoring for less than
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24 h (n = 8), PbtO2 = 0 mmHg with a confirmed diag-
nosis of brain death within 48 h of the start of intracranial
monitoring (n = 8), and incomplete PbtO2 data (n = 5).
An additional 23 patients were excluded from the present
analysis because of lack of data on Hgb or blood gas
analysis.

Relationship between hemoglobin and PbtO2

Monitoring of PbtO2 started on average 16 h after TBI
and lasted for 5 ± 3 days. A total of 474 hemoglobin
samples were analyzed. Median hemoglobin concentra-
tion was 10 g/dl (range 6.4–15.2 g/dl). Anemia (Hgb B
9 g/dl) was observed in 154 samples (33 %). The median
number of Hgb samples per patient was four (IQR 2–6).
The majority of Hgb samples were between 9 and 11 g/dl:
13 % of samples were\8 g/dl, 2.5 % were\7 g/dl, 13 %
were[12 g/dl, and 4 % were[13 g/dl. Categorization of
Hgb into four quartiles (B9, 9.1–10, 10.1–11, [11 g/dl)
provided optimal distribution of Hgb samples.

Using a mixed-effects model, estimated mean (95 %
CI) PbtO2 values were calculated for each Hgb level
(Fig. 1): compared to Hgb [ 11 g/dl (reference level),
mean PbtO2 was lower when Hgb level was B9 g/dl
(p \ 0.001), whereas no significant differences in mean
PbtO2 were found at higher Hgb levels. Association of
Hgb with PbtO2 was further examined after adjusting
for CPP, PaO2, and PaCO2 (Table 2) and for out-
come predictors (age, admission GCS, Marshall CT
grade, APACHE II score): compared to Hgb [ 11 g/dl,
Hgb B 9 g/dl was the only Hgb level that was associated
with lower PbtO2 values (coefficient -6.53 (95 % CI
-9.13; -3.94), p \ 0.001). A positive linear relation-
ship between PbtO2 and CPP also was found (coefficient
0.12 (95 % CI 0.04; 0.20), p = 0.003), i.e., for each
10 mmHg decrease of CPP the PbtO2 was 1.2 mmHg
lower.

Relationships between unfavorable outcome
and anemia, compromised PbtO2, and anemia
with simultaneous compromised PbtO2

Fifty-three patients (51 %) had anemia and 64 (80 %) had
brain hypoxia. Thirty patients had anemia with compro-
mised PbtO2 (38 %), i.e., they had at least one episode
with simultaneous Hgb B 9 g/dl and PbtO2 \ 20 mmHg.
Patients without simultaneous anemia and compromised
PbtO2 (n = 50; 62 %) were distributed as followed: six
had no anemia and no compromised PbtO2, ten had
anemia alone without compromised PbtO2, 21 had

Table 1 Patient clinical characteristics

Variable Value

Patient number 80
Age (years) 44 ± 20
Female/male (%) 18/62 (22.5 %)
Median admission GCS 4 (IQR 3–7)
Marshall CT grade
II 18 (22 %)
III 26 (33 %)
IV 3 (4 %)
V 33 (41 %)

APACHE II score 19 ± 5
Glasgow outcome score (GOS)
Good outcome GOS (4–5) 49 (61 %)
Poor outcome GOS (1–3) 31 (39 %)

Data are presented as mean ± SD or median (interquartile range,
IQR)

P
b

tO
2

(m
m

H
g

)

[≤9] [9.1−10] [10.1−11] [>11]

35

30

25

Hemoglobin level (g/dl)

samples nr. N=157 N=87 N=94 N=136

p<0.001

p=0.748 p=0.541 Ref

Mean
95% CI

Fig. 1 For each quartile of hemoglobin, mean (95 % CI) values of
PbtO2 were calculated with mixed-effects models, accounting for
subject variability over time

Table 2 Multivariate associations between the different hemo-
globin levels and mean PbtO2

Variable Coefficient 95% CI Adjusted
p value

Hemoglobin level (g/dl)
[11 Reference Reference Reference
10.1–11 -0.65 -3.40; 2.09 0.641
9.1–10 0.14 -3.13; 2.85 0.929
B9 -6.53 -9.13; -3.94 \0.001

Cerebral perfusion pressure 0.12 0.04; 0.20 0.003
PaO2 0.0002 -0.01; 0.01 0.971
PaCO2 0.10 -0.03; 0.22 0.120
Age -0.02 -0.13; 0.08 0.692
Admission GCS 0.37 -0.16; 0.89 0.168
Marshall CT grade -0.16 -1.71; 1.39 0.839
APACHE II score -0.23 -0.79; 0.32 0.409
Intercept 21.40

Mixed-effects multilevel model was used to examine the relation-
ship between mean PbtO2 and different hemoglobin levels, with
values of PbtO2 nested into patients and quartiles of hemoglobin,
cerebral perfusion pressure, PaO2, PaCO2, age, admission GCS,
Marshall CT grade, and APACHE II score entered as covariates.
Compared to hemoglobin[11 g/dl (reference level), a hemoglobin
level B9 g/dl was associated with lower PbtO2 levels. A decrease in
cerebral perfusion pressure was also associated with a reduction of
PbtO2. All the other covariates did not contribute significantly to
the model
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compromised PbtO2 alone without anemia, and 13 had
anemia and compromised PbtO2 that did not occur
simultaneously. After adjusting for age, admission GCS,
Marshall CT grade, and APACHE II score, anemia with
simultaneous compromised PbtO2 increased the risk of
unfavorable outcome (adjusted odds ratio 6.24 (95 % CI
1.61; 24.22), p = 0.008) (Table 3). Sensitivity of the
model was 74 %, specificity 86 %, and area under the
ROC curve 0.88.

When the number of red blood cell transfusions
received (complete data available on 57/80 patients) was
added as a covariate to the model, the association between
anemia with simultaneous compromised PbtO2 and
30-day outcome remained significant (adjusted odds ratio
8.50 (95 % CI 1.22; 59.49), p = 0.031).

Entering anemia and compromised PbtO2 separately as
two variables in the model instead of anemia with simul-
taneous compromised PbtO2 shows no impact of having
Hgb B 9 vs. [ 9 g/dl on unfavorable outcome (adjusted
OR 0.89 (95 % CI 0.23; 3.51), p = 0.867), whereas having
at least one episode of PbtO2 \ 20 mmHg vs. no compro-
mised PbtO2 increased the risk of unfavorable outcome
(adjusted OR 9.42, 95 % CI (1.49–59.63), p = 0.017).

Discussion

In our cohort of 80 severe TBI patients whose intraparen-
chymal PbtO2 was monitored, we found a significant
relationship between Hgb and PbtO2, whereby an Hgb level
B9 g/dl was strongly associated with lower mean PbtO2

values. Also, anemia (defined as Hgb B 9 g/dl) and
simultaneous compromised PbtO2 (defined as
PbtO2 \ 20 mmHg), but not anemia alone, was associated
with a higher risk of unfavorable outcome, irrespective of

cerebral and systemic injury, and even after controlling for
the amount of blood that was transfused.

Relationship between hemoglobin and brain oxygen

Studies in TBI patients have used variable thresholds
(8–11 g/dl) to define anemia [1, 2], but an optimal threshold
for the definition of anemia in this setting is still unknown.
From a physiological standpoint, the lowest Hgb threshold
can be defined as the Hgb level below which oxygen
delivery is impaired and cerebral hypoxic injury begins to
occur. Mathematical modeling in animals suggests that
oxygen uptake in the ischemic brain progressively
decreases when hemoglobin concentration is less than
10 g/dl [6]. Here, we found mean PbtO2 values were lower
when hemoglobin was no greater than 9 g/dl. After
adjusting for important determinants of cerebral oxygena-
tion (CPP, PaO2, and PaCO2) and outcome (age, GCS,
Marshall CT grade, APACHE II score), Hgb B 9 g/dl was
the only Hgb level that was associated with significantly
lower PbtO2. This Hgb threshold is in line with the defini-
tion of anemia utilized by the largest TBI prognostic
database (the MRC CRASH trial, including more than
8,500 patients) [32] and with the current Hgb targets for
blood transfusion in neurocritical care [1, 11, 30, 31].

Impact of anemia with compromised PbtO2

on unfavorable outcome

Anemia is observed in approximately 50 % of TBI
patients [2]. Whether anemia is associated with poor
outcome after TBI is still controversial: some studies
found that anemia during the ICU stay was associated
with worse prognosis [10, 11], but another did not [12]. A
possible explanation for these controversial findings is
that the vulnerability of the brain to anemia may differ
across TBI patients. An important mechanism by which
anemia may contribute to secondary cerebral damage is
by reducing oxygen transport capacity and PbtO2 [9].
Consistent with this are the findings of increased
expression of hypoxia-related molecules (erythropoietin,
endothelial derived factors, neuronal nitric oxide syn-
thase) [8], providing mechanistic evidence of anemia-
induced tissue hypoxia. Here, we show that the simulta-
neous occurrence of anemia and compromised PbtO2 was
associated with worse outcome at 30 days. In contrast, we
found no association between anemia alone and outcome.
This is an important and novel finding that suggests that
anemia per se may not be detrimental, but it may aggra-
vate prognosis when it is simultaneously associated with
compromised PbtO2. Importantly, when adjusting for the
number of units of blood transfused, the association of
anemia and simultaneous compromised PbtO2 with out-
come remained statistically significant, suggesting that

Table 3 Relationship between anemia with simultaneous com-
promised PbtO2 and unfavorable outcome

Variable Odds
ratio

95% CI p

Anemia (Hgb B 9 g/dl) and
simultaneous brain hypoxia
(PbtO2 \ 20 mmHg)

6.24 1.61; 24.22 0.008

Admission GCS 0.80 0.65; 1.00 0.045
Marshall CT grade 1.69 0.98; 2.93 0.059
APACHE II score 1.27 1.02; 1.58 0.030
Age 1.01 0.97; 1.04 0.758

Logistic regression was used to examine the association between
anemia with simultaneous brain hypoxia and unfavorable outcome
(defined as a GCS 1–3 at 30 days), adjusting for age, admission
GCS, Marshall CT grade, and APACHE II score. The presence of
anemia with simultaneous brain hypoxia increased the risk of
unfavorable outcome by 6.24. Sensitivity of the model was 74 %,
specificity 86 %, and the area under the ROC curve 0.88
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anemia with compromised PbtO2 per se, independent of
transfusions, was a risk factor for unfavorable outcome.

Potential clinical implications of our study

Understanding the mechanisms involved in anemia-
induced cerebral injury will contribute to the development
of optimal therapy for anemic TBI patients. An important
issue is a clearer definition of transfusion triggers based
on individual physiological endpoints rather than gen-
eralized hemoglobin thresholds: this may reduce
transfusion-related morbidity and attenuate anemia-
induced cerebral insults, i.e., balance the potential risks
associated with anemia and transfusion [16]. Our findings
suggest that PbtO2 may be a useful physiological target to
manage anemia in patients with severe TBI.

Study limitations

There are several potential limitations to our study. First,
although data were extracted prospectively, analysis was
retrospective. However statistical analysis was performed
by an independent statistician (Katia Iglesias) and blinded
to patient outcome. Second, despite a standardized algo-
rithm to manage ICP/CPP/PbtO2 being applied to all
subjects, the study was performed at a single institution
and included a limited sample size and a selected group of
severe TBI patients who underwent PbtO2 monitoring.
Our findings cannot be generalized to a wider TBI pop-
ulation: larger studies are needed to confirm our findings.
All patients received cause-directed therapy to maintain
PbtO2 [ 20 mmHg: therefore it is possible that patients
with anemia and low PbtO2 were those who were unre-
sponsive to interventions to ‘correct’ compromised PbtO2

and that it was this failure of PbtO2 to respond to inter-
ventions that drove this outcome. This is a potential
confounder. Third, Hgb values were matched to values of
PbtO2, CPP, and blood gas analysis obtained during the
3 h previous to Hgb sampling. Although somewhat arbi-
trary we found this interval appropriate, particularly
because we did not account for concomitant therapeutic
interventions that may substantially alter many of the
variables measured. Increasing this interval further (e.g.,
up to 12 h) could have introduced confounding factors.
On the other hand, the relationship between hemoglobin,
PbtO2, and outcome may have been underestimated.
Another important issue is whether the covariation
between PbtO2, Hgb, and outcome are interlinked due to
other reasons: owing to the nature of the study, this cannot
be determined. Furthermore, given the limited number of
samples with Hgb \ 8 and \ 7 g/dl, the relevance of the

proportion of patients with Hgb thresholds lower than 9 g/
dl is unclear. Fourth, only outcome at 30 days was
obtained: although this time point may be sufficient to
differentiate outcomes of general ICU patients, it may not
be sufficient time to reflect long-term recovery. Thus we
cannot speculate as to whether anemia with compromised
PbtO2 is associated with worse long-term prognosis. Fifth,
the PbtO2 monitor measures regional PbtO2: clinical
studies suggest that regional PbtO2 still may be a good
indicator of global brain oxygenation, particularly when
the probe is located in uninjured brain [35] as in the
present study. Since the PbtO2 probes were placed in
normal-appearing brain tissue on admission CT, and not
around areas of contusions or lesions, it may underesti-
mate the extent of brain hypoxia, at least in patients with
focal injuries and hematomas [33]. Sixth, the precise
causes of anemia-related brain hypoxia in our TBI cohort
are not defined. Mixed-effects models, however, indicate
that low CPP was an important cause of reduced PbtO2.
Finally, logistic regression model performed on the subset
of patients in whom complete data on blood transfusions
were available (n = 57/80) showed that the impact of
anemia with compromised PbtO2 was independent of the
units of blood transfused. Although this result was derived
from a rather limited number of patients, it reinforces the
main conclusions of the study.

Conclusions

In this cohort study of severe TBI patients whose brain
oxygen was monitored, patients with hemoglobin levels
no greater than 9 g/dl were more likely to have lower
mean PbtO2 values, irrespective of other important
physiologic cofactors, including cerebral perfusion pres-
sure, PaO2, and PaCO2. Anemia with simultaneous
compromised PbtO2, but not anemia alone, increased the
risk of unfavorable 30-day outcome after severe TBI. Our
findings suggest that anemia-associated compromised
PbtO2 may aggravate TBI prognosis and support the
concept that PbtO2 may be a helpful physiologic target for
the management of anemia after severe head injury.
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