We investigate whether the mean star formation activity of star-forming
galaxies from z=0 to z=0.7 in the GOODS-S field can be reproduced by simple
evolution models of these systems. In this case, such models might be used as
first order references for studies at higher z to decipher when and to what
extent a secular evolution is sufficient to explain the star formation history
in galaxies.
We selected star-forming galaxies at z=0 and at z=0.7 in IR and in UV to have
access to all the recent star formation. We focused on galaxies with a stellar
mass ranging between 10^{10} and 10^{11} M_sun for which the results are not
biased by the selections. We compared the data to chemical evolution models
developed for spiral galaxies and originally built to reproduce the main
characteristics of the Milky Way and nearby spirals without fine-tuning them
for the present analysis. We find a shallow decrease in the specific star
formation rate (SSFR) when the stellar mass increases. The evolution of the
SSFR characterizing both UV and IR selected galaxies from z=0 to z=0.7 is
consistent with the models built to reproduce the present spiral galaxies.
There is no need to strongly modify of the physical conditions in galaxies to
explain the average evolution of their star formation from z=0 to z=0.7. We use
the models to predict the evolution of the star formation rate and the
metallicity on a wider range of redshift and we compare these predictions with
the results of semi-analytical models.Comment: 14 pages, 10 figures. accepted for publication in Astronomy &
Astrophysic