136 research outputs found

    Rotational quenching of CO due to H2_2 collisions

    Full text link
    Rate coefficients for state-to-state rotational transitions in CO induced by both para- and ortho-H2_2 collisions are presented. The results were obtained using the close-coupling method and the coupled-states approximation, with the CO-H2_2 interaction potential of Jankowski & Szalewicz (2005). Rate coefficients are presented for temperatures between 1 and 3000 K, and for CO(v=0,jv=0,j) quenching from j=140j=1-40 to all lower jj^\prime levels. Comparisons with previous calculations using an earlier potential show some discrepancies, especially at low temperatures and for rotational transitions involving large Δj|\Delta j|. The differences in the well depths of the van der Waals interactions in the two potential surfaces lead to different resonance structures in the energy dependence of the cross sections which influence the low temperature rate coefficients. Applications to far infrared observations of astrophysical environments are briefly discussed.Comment: 28 pages, 10 figure

    Morphology and Size Differences between Local & High Redshift Luminous Infrared Galaxies

    Full text link
    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z ~ 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z ~ 1 and a lensed galaxy at z ~ 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z > 1 for a given IR luminosity compared to their local counterparts.Comment: Accepted for publication in The Astrophysical Journal; 13 pages, 7 figures; Online materials available at http://inthanon.as.arizona.edu/~wiphu/Rujopakarn_2010

    [CII] 158 micron Luminosities and Star Formation Rate in Dusty Starbursts and AGN

    Get PDF
    Results are presented for [CII] 158 micron line fluxes observed with the Herschel PACS instrument in 112 sources with both starburst and AGN classifications, of which 102 sources have confident detections. Results are compared with mid-infrared spectra from the Spitzer Infrared Spectrometer and with L(IR) from IRAS fluxes; AGN/starburst classifications are determined from equivalent width of the 6.2 micron PAH feature. It is found that the [CII] line flux correlates closely with the flux of the 11.3 micron PAH feature independent of AGN/starburst classification, log [f([CII] 158 micron)/f(11.3 micron PAH)] = -0.22 +- 0.25. It is concluded that [CII] line flux measures the photodissociation region associated with starbursts in the same fashion as the PAH feature. A calibration of star formation rate for the starburst component in any source having [CII] is derived comparing [CII] luminosity L([CII]) to L(IR) with the result that log SFR = log L([CII)]) - 7.08 +- 0.3, for SFR in solar masses per year and L([CII]) in solar luminosities. The decreasing ratio of L([CII]) to L(IR) in more luminous sources (the "[CII] deficit") is shown to be a consequence of the dominant contribution to L(IR) arising from a luminous AGN component because the sources with largest L(IR) and smallest L([CII])/L(IR) are AGN.Comment: Accepted for publication in The Astrophysical Journa

    A Census of the High-Density Molecular Gas in M82

    Full text link
    We present a three-pointing study of the molecular gas in the starburst nucleus of M82 based on 190 - 307 GHz spectra obtained with Z-Spec at the Caltech Submillimeter Observatory. We present intensity measurements, detections and upper limits, for 20 transitions, including several new detections of CS, HNC, C2H, H2CO, and CH3CCH lines. We combine our measurements with previously-published measurements at other frequencies for HCN, HNC, CS, C34S, and HCO+ in a multi-species likelihood analysis constraining gas mass, density and temperature, and the species' relative abundances. We find some 1.7 - 2.7 x 10^8 M_sun of gas with n_H2 between 1 - 6 x 10^4 cm^-3 and T > 50 K. While the mass and temperature are comparable to values inferred from mid-J CO transitions, the thermal pressure is a factor of 10 - 20 greater. The molecular interstellar medium is largely fragmented and is subject to ultraviolet irradiation from the star clusters. It is also likely subject to cosmic rays and mechanical energy input from the supernovae, and is warmer on average than the molecular gas in the massive star formation regions in the Milky Way. The typical conditions in the dense gas in M82's central kpc appear unfavorable for further star formation; if any appreciable stellar populations are currently forming, they are likely biased against low mass stars, producing a top-heavy initial mass function.Comment: 15 pages (using emulateapj.cls), 6 figures, Astrophysical Journal, in pres

    The Spatial Extent of (U)LIRGs in the mid-Infrared I: The Continuum Emission

    Get PDF
    We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey (GOALS) sample based on 5-15um low resolution spectra obtained with the IRS on Spitzer. We calculate the fraction of extended emission as a function of wavelength for the galaxies in the sample, FEE_lambda. We can identify 3 general types of FEE_lambda: one where it is constant, one where features due to emission lines and PAHs appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7um. More than 30% of the galaxies have a median FEE_lambda larger than 0.5 implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0<=FEE_13.2um<=0.85). The large values of FEE_13.2um that we find in many LIRGs suggest that their extended MIR continuum emission originates in scales up to 10kpc. The mean size of the LIRG cores at 13.2um is 2.6kpc. However, once the LIR of the systems reaches the threshold of ~10^11.8Lsun, all sources become clearly more compact, with FEE_13.2um<=0.2, and their cores are unresolved. Our estimated upper limit for the core size of ULIRGs is less than 1.5kpc. The analysis indicates that the compactness of systems with LIR>~10^11.25Lsun strongly increases in those classified as mergers in their final stage of interaction. The FEE_13.2um is also related to the contribution of an active galactic nucleus (AGN) to the MIR. Galaxies which are more AGN-dominated are less extended, independently of their LIR. We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f_60um/f_100um) color. This enables us to place a lower limit to the area in a galaxy from where the cold dust emission may originate, a prediction which can be tested soon with the Herschel Space Telescope.Comment: 18 pages, 8 figures, accepted for publication in Ap

    Crosslingual Generalization through Multitask Finetuning

    Full text link
    Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting, but so far explorations of MTF have focused on English data and models. We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0. We find finetuning large multilingual language models on English tasks with English prompts allows for task generalization to non-English languages that appear only in the pretraining corpus. Finetuning on multilingual tasks with English prompts further improves performance on English and non-English tasks leading to various state-of-the-art zero-shot results. We also investigate finetuning on multilingual tasks with prompts that have been machine-translated from English to match the language of each dataset. We find training on these machine-translated prompts leads to better performance on human-written prompts in the respective languages. Surprisingly, we find models are capable of zero-shot generalization to tasks in languages they have never intentionally seen. We conjecture that the models are learning higher-level capabilities that are both task- and language-agnostic. In addition, we introduce xP3, a composite of supervised datasets in 46 languages with English and machine-translated prompts. Our code, datasets and models are freely available at https://github.com/bigscience-workshop/xmtf.Comment: 9 main pages (119 with appendix), 16 figures and 11 table

    A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    Get PDF
    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 _ z _ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (LIR >1011.5 L_). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C ii] 157.7μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have LCii/LFIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C ii] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an LCii−LFIR relation with a slope of unity, from which local ULIRGs and high-z active-galactic-nucleus-dominated sources are clear outliers.We also confirm that the strong anti-correlation between the LCii/LFIR ratio and the far-IR color L60/L100 observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower LC ii/LFIR at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high LC ii/LFIR ratios, the moderate star formation efficiencies (LIR/L _COor LIR/MH2 ), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ∼ 0.3

    Strange themes in pandemic dreams: Insomnia was associated with more negative, anxious and death-related dreams during the COVID-19 pandemic

    Get PDF
    Dreaming and insomnia are important markers of distress in times of crisis. Here, we present a longitudinal, mixed‐methods study examining changes in dreaming between individuals with and without insomnia symptoms and their relationship to mental health during the COVID‐19 pandemic. A global survey examining insomnia symptoms, dreams and mental health was launched in April 2020 and followed participants over 12 months. Of 2240 participants, 1009 (45%) reported dream changes at baseline. A higher proportion of participants with new‐onset insomnia reported dream changes (55%) than those with pre‐existing insomnia (45%) or good sleepers (36%). Overall, thematic analysis identified key dream change themes of increased dream activity, with participants dreaming vividly, in high‐definition, and with a strong negative charge. Themes around survival, adjusting to pandemic life, meaning‐making and poor sleep quality were also noted. Linguistic Inquiry Word Count showed that individuals with insomnia used more negative words to describe their dream changes than good sleepers. Specifically, the new‐onset insomnia group used more anxious and death‐related words than those who slept well. Notably, all groups experienced a significant reduction in dream activity by 3‐month follow‐up. Lastly, dream changes were associated with worse mental health symptoms over time, and this effect was more pronounced in individuals with insomnia. Our results highlight that insomnia symptoms, especially new‐onset insomnia, are associated with more negative dream changes during collective stressful events, potentially compounding daytime distress and mental health symptoms over time. During times of crisis, dreaming and insomnia may reveal an important target for mental health interventions

    Developmental Transcriptional Networks Are Required to Maintain Neuronal Subtype Identity in the Mature Nervous System

    Get PDF
    During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain
    corecore