551 research outputs found

    Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing

    Get PDF
    International audienceWe show how fully distributed space-time measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber-optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross-flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole abstraction borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer

    Active-distributed temperature sensing to continuously quantify vertical flow in boreholes

    Get PDF
    We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics

    Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

    Get PDF
    International audienceFractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here, we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing

    Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push-pull tracer tests

    No full text
    International audienceThe characterization and modeling of heat transfer in fractured media is particularly challenging as the existence of fractures at multiple scales induces highly localized flow patterns. From a theoretical and numerical analysis of heat transfer in simple conceptual models of fractured media, we show that flow channeling has a significant effect on the scaling of heat recovery in both space and time. The late time tailing of heat recovery under channeled flow is shown to diverge from the TðtÞ / t 21:5 behavior expected for the classical parallel plate model and follow the scaling TðtÞ / 1=tðlog tÞ 2 for a simple channel modeled as a tube. This scaling, which differs significantly from known scalings in mobile-immobile systems, is of purely geometrical origin: late time heat transfer from the matrix to a channel corresponds dimensionally to a radial diffusion process, while heat transfer from the matrix to a plate may be considered as a one-dimensional process. This phenomenon is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. These findings are supported by the results of a field experimental campaign performed on the fractured rock site of Ploemeur. The scaling of heat recovery in time and space, measured from thermal breakthrough curves measured through a series of push-pull tests at different scales, shows a clear signature of flow channeling. The whole data set can thus be successfully represented by a multichannel model parametrized by the mean channel density and aperture. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal tests may be controlled by fracture geometry. In addition, this highlights the interest of thermal push-pull tests as a complement to solute tracers tests to infer fracture aperture and geometry

    Analyzing Somatic DNA Repair in Arabidopsis Meiotic Mutants

    Get PDF
    Meiotic and somatic recombination share a common set of factors. Thus, the analysis of somatic DNA repair in meiotic mutant lines should be of special interest. Growth defects of mutant plants induced by specific genotoxins can thereby hint to DNA repair functions of the affected proteins. Here, we describe two kinds of approaches to characterize deficiencies in DNA repair in mutant lines of Arabidopsis thaliana, after genotoxin treatment

    Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes

    Get PDF
    We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes. © 2017 Elsevier Ltd.PKK and SL acknowledge a grant (16AWMP- B066761-04) from the AWMP Program funded by the Ministry of Land, Infrastructure and Transport of the Korean government and the support from Future Research Program (2E27030) funded by the Korea Institute of Science and Technology (KIST). PKK and RJ acknowledge a MISTI Global Seed Funds award. MD acknowledges the support of the European Research Council (ERC) through the project MHetScale (617511). TLB acknowledges the support of European Research Council (ERC) through the project Re- activeFronts (648377). RJ acknowledges the support of the US Department of Energy through a DOE Early Career Award (grant DE-SC0009286). The data to reproduce the work can be obtained from the corresponding author.N

    Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome

    Get PDF
    Background & Aims: Poorly digested, fermentable carbohydrates may induce symptoms of irritable bowel syndrome (IBS), via unclear mechanisms. We performed a randomized trial with magnetic resonance imaging (MRI) analysis to investigate correlations between symptoms and changes in small and large bowel contents following oral challenge. Methods: We performed a 3-period crossover study of 29 adult patients with IBS (based on Rome III criteria, with symptoms of abdominal pain or discomfort for at least 2 days/week) and reported bloating. In parallel we performed the same study of 29 healthy individuals (controls). Studies were performed in the United Kingdom from January 2013 through February 2015. On 3 separate occasions (at least 7 days apart), subjects were given a 500 ml drink containing 40 g of carbohydrate (glucose in the first period, fructose in the second, and inulin in the third, in a random order). Levels of breath hydrogen were measured and intestinal content was assessed by MRI before and at various time points after consumption of each drink. Symptoms were determined based on subjects’ responses to the Hospital Anxiety and Depression Scale questionnaire and the Patient Health Questionnaire-15. The primary endpoint was whether participants had a clinically important symptom response during the 300 minutes following consumption of the drink. Results: More patients with IBS reached the pre-defined symptom threshold after intake of inulin (13/29) or fructose (11/29) than glucose (6/29). Symptoms peaked sooner after intake of fructose than inulin. Fructose increased small bowel water content in both patients and controls whereas inulin increased colonic volume and gas in both. Fructose and inulin increased breath hydrogen levels in both groups, compared to glucose; fructose produced an earlier increase than inulin. Controls had lower symptom scores during the period after drink consumption than patients with IBS, despite similar MRI parameters and breath hydrogen responses. In patients who reached the symptom threshold after inulin intake, peak symptom intensity correlated with peak colonic gas (r = 0.57; P<0.05). Changes in MRI features and peak breath hydrogen levels were similar in patients who did and did not reach symptom threshold. Conclusions: Patients with IBS and healthy individuals without IBS (controls) have similar physiological responses following intake of fructose or inulin; patients more frequently report symptoms after inulin than controls. In patients with a response to inulin, symptoms relate to levels of intra-luminal gas, but peak gas levels do not differ significantly between responders, non-responders or controls. This indicates that colonic hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in patients with IBS. Clinicaltrials.gov no: NCT0177685

    Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in eLife 6 (2017): e30867, doi:10.7554/eLife.30867.The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.DWG has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement no. 241548 (MitoSys) and no. 258068 (Systems Microscopy), an ERC Starting Grant under agreement no. 281198 (DIVIMAGE), and from the Austrian Science Fund (FWF) project no. SFB F34-06 (Chromosome Dynamics). FS has received funding from an EMBO long-term fellowship (ALTF 1447–2012). SM has received funding from Human Frontier Science Program cross-disciplinary fellowship (LT000096/2011)
    corecore